Araştırma Makalesi
BibTex RIS Kaynak Göster

Domates Kabuğu Fenolikleri: Mikrodalga Destekli Ekstraksiyon Koşullarının Optimizasyonu ve Mikroenkapsülasyonu

Yıl 2023, Cilt: 13 Sayı: 3, 1755 - 1767, 01.09.2023
https://doi.org/10.21597/jist.1290953

Öz

Bu çalışma mikrodalga destekli ekstraksiyon (MDE) sistemi kullanılarak domates kabuklarından fenolik bileşiklerin ekstraksiyonunu ve elde edilen fenoliklerin püskürtmeli kurutma tekniği ile mikroenkapsülasyonunu kapsamaktadır. Bu amaçla maksimum düzeyde geri kazanım için MDE koşulları (mikrodalga gücü: 250-500 W ve ekstraksiyon süresi: 1-60 dk) yanıt yüzey metodolojisi ile optimize edilmiştir. Toplam fenolik madde miktarı (TFM) (3.58 mg GAE/g) ve antioksidan kapasite (29.85 mmol TE/g) için en yüksek değerler mikrodalga gücünün 310 W ve ekstraksiyon süresinin 35 dk olduğu noktada elde edilmiştir. Optimum koşullarda elde edilen ekstraktlara maltodekstrin (ekstraktaki suda çözünür toplam katı madde miktarının maltodekstrine oranı: 1/1 w/w) ilave edilmiş ve nihai solüsyon püskürtmeli kurutma tekniği kullanılarak toz forma dönüştürülmüştür. Mikroenkapsülasyon prosesinin başarısı fourier dönüşümlü kızılötesi spektroskopi (FTIR) ile doğrulanmıştır. Mikrokapsüller için toz verimi, nem içeriği, su aktivitesi ve çözünürlük değerleri sırasıyla %63.45, 4.18, 0.19 ve %92.34 olarak belirlenmiştir. Nihai toz ürünlerin antioksidan kapasitesi TFM miktarı (3.17 mg GAE/g), DPPH (23.10 mmol TE/g), ABTS (75.83 mmol TE/g) ve FRAP (13.95 mmol TE/g) yöntemleri ile araştırılmıştır. Elde edilen sonuçlar atık materyallerin bertaraf edilmesinin veya ekonomik değeri düşük alanlarda kullanılmasının makul bir yaklaşım olmadığını, aksine katma değerli ürünlere dönüştürülme potansiyellerini ortaya koymuştur.

Kaynakça

  • Ajila, C., M., Naidu, K. A., Bhat, S. G., & Rao, U. P. (2007). Bioactive compounds and antioxidant potential of mango peel extract. Food chemistry, 105(3), 982-988. https://doi.org/10.1016/j.foodchem.2007.04.052
  • Álvarez, A., Poejo, J., Matias, A. A., Duarte, C. M., Cocero, M. J., & Mato, R. B. (2017). Microwave pretreatment to improve extraction efficiency and polyphenol extract richness from grape pomace. Effect on antioxidant bioactivity. Food and Bioproducts Processing, 106, 162-170. https://doi.org/10.1016/j.fbp.2017.09.007
  • Arriola, N. D. A., Chater, P. I., Wilcox, M., Lucini, L., Rocchetti, G., Dalmina, M., ... & Amboni, R. D. D. M. C. (2019). Encapsulation of stevia rebaudiana Bertoni aqueous crude extracts by ionic gelation–Effects of alginate blends and gelling solutions on the polyphenolic profile. Food chemistry, 275, 123-134. https://doi.org/10.1016/j.foodchem.2018.09.086
  • Aswathy, S., Suresha, G., Sneha, N., & Sadananda, G. (2019). Microencapsulation of lycopene rich cherry tomato powder using spray drying. International Journal of Chemical Studies, 7(1), 2270-2277
  • Azabou, S., Sebii, H., Taheur, F. B., Abid, Y., Jridi, M., & Nasri, M. (2020). Phytochemical profile and antioxidant properties of tomato by-products as affected by extraction solvents and potential application in refined olive oils. Food Bioscience, 36, 100664. https://doi.org/10.1016/j.fbio.2020.100664
  • Başyiğit, B., Sağlam, H., Kandemir, Ş., Karaaslan, A., & Karaaslan, M. (2020). Microencapsulation of sour cherry oil by spray drying: Evaluation of physical morphology, thermal properties, storage stability, and antimicrobial activity. Powder Technology, 364, 654-663. https://doi.org/10.1016/j.powtec.2020.02.035
  • Başyiğit, B., Yücetepe, M., Karaaslan, A., & Karaaslan, M. (2021). High efficiency microencapsulation of extra virgin olive oil (EVOO) with novel carrier agents: Fruit proteins. Materials Today Communications, 28, 102618. https://doi.org/10.1016/j.mtcomm.2021.102618
  • Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292
  • Bezerra, C. V., Amante, E. R., de Oliveira, D. C., Rodrigues, A. M., & da Silva, L. H. M. (2013). Green banana (Musa cavendishii) flour obtained in spouted bed–Effect of drying on physico-chemical, functional and morphological characteristics of the starch. Industrial crops and products, 41, 241-249. https://doi.org/10.1016/j.indcrop.2012.04.035
  • Bhandari, B. R., Datta, N., & Howes, T. (1997). Problems associated with spray drying of sugar-rich foods. Drying technology, 15(2), 671-684. https://doi.org/10.1080/07373939708917253
  • Bozkurt, E., Sıcak, Y., Oruç-Emre, E. E., Iyidoğan, A. K., & Öztürk, M. (2020). Design and bioevaluation of novel hydrazide-hydrazones derived from 4-acetyl-N-substituted benzenesulfonamide. Russian Journal of Bioorganic Chemistry, 46, 702-714. https://doi .org/10.1134/S1068162020050052
  • Caliskan, G., & Dirim, S. N. (2013). The effects of the different drying conditions and the amounts of maltodextrin addition during spray drying of sumac extract. Food and bioproducts Processing, 91(4), 539-548. https://doi.org/10.1016/j.fbp.2013.06.004
  • Çam, M., İçyer, N. C., & Erdoğan, F. (2014). Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional food development. LWT-Food Science and Technology, 55(1), 117-123. https://doi.org/10.1016/j.lwt.2013.09.011
  • Cam, M., Basyigit, B., Alasalvar, H., Yilmaztekin, M., Ahhmed, A., Sagdic, O., ... & Telci, I. (2020). Bioactive properties of powdered peppermint and spearmint extracts: Inhibition of key enzymes linked to hypertension and type 2 diabetes. Food Bioscience, 35, 100577. https://doi.org/10.1016/j.fbio.2020.100577
  • Chong, S. Y., & Wong, C. W. (2017). Effect of spray dryer inlet temperature and maltodextrin concentration on colour profile and total phenolic content of Sapodilla (Manilkara zapota) powder. International Food Research Journal, 24(6), 2543-2548
  • Coelho, M. C., Rodrigues, A. S., Teixeira, J. A., & Pintado, M. E. (2023). Integral valorisation of tomato by-products towards bioactive compounds recovery: Human health benefits. Food Chemistry, 410, 135319. https://doi.org/10.1016/j.foodchem.2022.135319
  • Çam, M., Hışıl, Y., & Durmaz, G. (2009). Classification of eight pomegranate juices based on antioxidant capacity measured by four methods. Food chemistry, 112(3), 721-726. https://doi.org/10.1016/j.foodchem.2008.06.009
  • Elbadrawy, E., & Sello, A. (2016). Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arabian Journal of Chemistry, 9, S1010-S1018. https://doi.org/10.1016/j.arabjc.2011.11.011
  • FAO, 2020. Erişim adresi: https://www.fao.org/faostat/en/#data/QCL
  • Farid, E., Mounir, S., Talaat, E., Elnemr, S., & Siliha, H. (2022). Effect of foaming parameters on the physical and phytochemical properties of tomato powder. Food Science and Biotechnology, 31(11), 1423-1431. https://doi.org/10.1007/s10068-022-01125-9 García, P., Fredes, C., Cea, I., Lozano-Sánchez, J., Leyva-Jiménez, F. J., Robert, P., ... & Jimenez, P. (2021). Recovery of bioactive compounds from pomegranate (Punica granatum L.) peel using pressurized liquid extraction. Foods, 10(2), 203. https://doi.org/10.3390/foods10020203
  • Gheonea, I., Aprodu, I., Cîrciumaru, A., Râpeanu, G., Bahrim, G. E., & Stănciuc, N. (2021). Microencapsulation of lycopene from tomatoes peels by complex coacervation and freeze-drying: Evidences on phytochemical profile, stability and food applications. Journal of Food Engineering, 288, 110166. https://doi.org/10.1016/j.jfoodeng.2020.110166
  • Ishrat, S. A., Naik, H. R., Zargar, I. A., Wani, S. M., & Altaf, U. (2020). Investigation of the physical properties of tomato powder prepared by spray drying technology. IJCS, 8(1), 1071-1074. https://doi.org/10.22271/chemi.2020.v8.i1n.8395
  • Jaya, S., Das, H., & Mani, S. (2006). Optimization of maltodextrin and tricalcium phosphate for producing vacuum dried mango powder. International Journal of Food Properties, 9(1), 13-24. https://doi.org/10.1080/10942910500217666
  • Jorge, A., Sauer Leal, E., Sequinel, R., Sequinel, T., Kubaski, E. T., & Tebcherani, S. M. (2018). Changes in the composition of tomato powder (Lycopersicon esculentum Mill) resulting from different drying methods. Journal of food processing and preservation, 42(5), e13595. https://doi.org/10.1111/jfpp.13595
  • Kadiroğlu, P. (2018). FTIR spectroscopy for prediction of quality parameters and antimicrobial activity of commercial vinegars with chemometrics. Journal of the Science of Food and Agriculture, 98(11), 4121-4127. https://doi.org/10.1002/jsfa.8929
  • Karakuş, M. Ş., Akalan, M., Yücetepe, M., Akay, K. B., Karaaslan, A., Başyiğit, B., & Karaaslan, M. (2023). Kullanıma hazır suda çözünebilir keçiboynuzu kabuğu tozu üretiminin yanıt yüzey yöntemi ile çift aşamalı optimizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(2), 1-1. https://doi.org/10.28948/ngumuh.1205063
  • Karrar, E., Mahdi, A. A., Sheth, S., Ahmed, I. A. M., Manzoor, M. F., Wei, W., & Wang, X. (2021). Effect of maltodextrin combination with gum arabic and whey protein isolate on the microencapsulation of gurum seed oil using a spray-drying method. International Journal of Biological Macromolecules, 171, 208-216. https://doi.org/10.1016/j.ijbiomac.2020.12.045
  • Knoblich, M., Anderson, B., & Latshaw, D. (2005). Analyses of tomato peel and seed byproducts and their use as a source of carotenoids. Journal of the Science of Food and Agriculture, 85(7), 1166-1170. https://doi.org/10.1002/jsfa.2091
  • Konwarh, R., Pramanik, S., Devi, K. S. P., Saikia, N., Boruah, R., Maiti, T. K., ... & Karak, N. (2012). Lycopene coupled ‘trifoliate’polyaniline nanofibers as multi-functional biomaterial. Journal of Materials Chemistry, 22(30), 15062-15070. https://doi.org/10.1039/C2JM32530F
  • Lavecchia, R., & Zuorro, A. (2008). Improved lycopene extraction from tomato peels using cell-wall degrading enzymes. European Food Research and Technology, 228, 153-158. https://doi.org/10.1007/s00217-008-0897-8
  • Li, J., Pettinato, M., Casazza, A. A., & Perego, P. (2022). A Comprehensive Optimization of Ultrasound-Assisted Extraction for Lycopene Recovery from Tomato Waste and Encapsulation by Spray Drying. Processes, 10(2), 308. https://doi.org/10.3390/pr10020308
  • Li, Q., Li, J., Li, H., Xu, R., Yuan, Y., & Cao, J. (2019). Physicochemical properties and functional bioactivities of different bonding state polysaccharides extracted from tomato fruit. Carbohydrate polymers, 219, 181-190. https://doi.org/10.1016/j.carbpol.2019.05.020
  • Liu, F., Cao, X., Wang, H., & Liao, X. (2010). Changes of tomato powder qualities during storage. Powder Technology, 204(1), 159-166. https://doi.org/10.1016/j.powtec.2010.08.002
  • Manjula, B., Pooja, M. R., Aruna, R., Leelavathi, N., Rekha, A. K., & Shiny, G. (2023). Development of instant tomato powder using different drying technology. The Pharma Innovation Journal, 12(1): 2686-2690
  • Pan, X., Niu, G., & Liu, H. (2002). Comparison of microwave-assisted extraction and conventional extraction techniques for the extraction of tanshinones from Salvia miltiorrhiza bunge. Biochemical Engineering Journal, 12(1), 71-77. https://doi.org/10.1016/S1369-703X(02)00039-6
  • Pieper, J. R., & Barrett, D. M. (2009). Effects of organic and conventional production systems on quality and nutritional parameters of processing tomatoes. Journal of the Science of Food and Agriculture, 89(2), 177-194. https://doi.org/10.1002/jsfa.3437
  • Ranveer, R. C., Patil, S. N., & Sahoo, A. K. (2013). Effect of different parameters on enzyme-assisted extraction of lycopene from tomato processing waste. Food and Bioproducts Processing, 91(4), 370-375. https://doi.org/10.1016/j.fbp.2013.01.006
  • Romano, N., Ureta, M. M., Guerrero-Sánchez, M., & Gómez-Zavaglia, A. (2020). Nutritional and technological properties of a quinoa (Chenopodium quinoa Willd.) spray-dried powdered extract. Food Research International, 129, 108884. https://doi.org/10.1016/j.foodres.2019.108884
  • Quek, S. Y., Chok, N. K., & Swedlund, P. (2007). The physicochemical properties of spray-dried watermelon powders. Chemical Engineering and Processing: Process Intensification, 46(5), 386-392. https://doi.org/10.1016/j.cep.2006.06.020
  • Sharayei, P., Azarpazhooh, E., Zomorodi, S., & Ramaswamy, H. S. (2019). Ultrasound assisted extraction of bioactive compounds from pomegranate (Punica granatum L.) peel. Lwt, 101, 342-350. https://doi.org/10.1016/j.lwt.2018.11.031
  • Shwetha, M. S., Sinija, V. R., Durgadevi, M., Yadav, B. K., & Shanmugasundaram, S. (2018). Functional and Morphological Studies of Organic and Inorganic Tomatoes. Pharmacognosy Journal, 10(4). https://doi.org/10.5530/pj.2018.4.119
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
  • Southon, S. (2000). Increased fruit and vegetable consumption within the EU: potential health benefits. Food Research International, 33(3-4), 211-217. https://doi.org/10.1016/S0963-9969(00)00036-3
  • Souza, A. L., Hidalgo-Chávez, D. W., Pontes, S. M., Gomes, F. S., Cabral, L. M., & Tonon, R. V. (2018). Microencapsulation by spray drying of a lycopene-rich tomato concentrate: Characterization and stability. LWT, 91, 286-292. https://doi.org/10.1016/j.lwt.2018.01.053
  • Strati, I. F., & Oreopoulou, V. (2014). Recovery of carotenoids from tomato processing by-products–a review. Food research international, 65, 311-321. https://doi.org/10.1016/j.foodres.2014.09.032
  • Szabo, K., Cătoi, A. F., & Vodnar, D. C. (2018). Bioactive compounds extracted from tomato processing by-products as a source of valuable nutrients. Plant foods for human nutrition, 73, 268-277. https://doi.org/10.1007/s11130-018-0691-0
  • Turchiuli, C., Munguia, M. J., Sanchez, M. H., Ferre, H. C., & Dumoulin, E. (2014). Use of different supports for oil encapsulation in powder by spray drying. Powder Technology, 255, 103-108. https://doi.org/10.1016/j.powtec.2013.08.026
  • Vardin, H., & Yasar, M. (2012). Optimisation of pomegranate (Punica Granatum L.) juice spray‐drying as affected by temperature and maltodextrin content. International Journal of Food Science & Technology, 47(1), 167-176. https://doi.org/10.1111/j.1365-2621.2011.02823.x
  • Yüksekkaya, Ş., Başyiğit, B., Sağlam, H., Pekmez, H., Cansu, Ü., Karaaslan, A., & Karaaslan, M. (2021). Valorization of fruit processing by-products: Free, esterified, and insoluble bound phytochemical extraction from cherry (Prunus avium) tissues and their biological activities. Journal of Food Measurement and Characterization, 15, 1092-1107. https://doi.org/10.1007/s11694-020-00698-5
  • Zhang, L., Zeng, X., Fu, N., Tang, X., Sun, Y., & Lin, L. (2018). Maltodextrin: A consummate carrier for spray-drying of xylooligosaccharides. Food research international, 106, 383-393. https://doi.org/10.1016/j.foodres.2018.01.004

Tomato Peel Phenolics: Microwave Assisted Extraction Conditions Optimization and Microencapsulation

Yıl 2023, Cilt: 13 Sayı: 3, 1755 - 1767, 01.09.2023
https://doi.org/10.21597/jist.1290953

Öz

This study covered the phenolic compounds extraction from tomato peels using microwave assisted extraction (MAE) system and their microencapsulation by spray drying technique. For this purpose, MAE conditions (microwave power: 250-500 W and extraction time: 1-60 min) for maximum recovery were optimized by response surface methodology. The highest values for total phenolic content (TPC) (3.58 mg GAE/g) and antioxidant capacity (29.85 mmol TE/g) were obtained at the point where the microwave power was 310 W and the extraction time was 35 min. Phenolic extracts produced under optimum conditions were mixed with maltodextrin (the ratio of soluble solids in the extracts to maltodextrin: 1/1 w/w) and converted into powder form using spray drying technique. The success of the microencapsulation process was confirmed by fourier transform infrared spectroscopy (FTIR). Powder yield, moisture content, water activity and solubility values for microcapsules were determined as 63.45%, 4.18, 0.19 and 92.34%, respectively. The antioxidant capacity of the final powder products was investigated by TFM (3.17 mg GAE/g), DPPH (23.10 mmol TE/g), ABTS (75.83 mmol TE/g) and FRAP (13.95 mmol TE/g) methods. The results show that it is not a reasonable approach to dispose of waste materials or use them in field with low economic value. On the contrary, they have the potential to transform value-added products.

Kaynakça

  • Ajila, C., M., Naidu, K. A., Bhat, S. G., & Rao, U. P. (2007). Bioactive compounds and antioxidant potential of mango peel extract. Food chemistry, 105(3), 982-988. https://doi.org/10.1016/j.foodchem.2007.04.052
  • Álvarez, A., Poejo, J., Matias, A. A., Duarte, C. M., Cocero, M. J., & Mato, R. B. (2017). Microwave pretreatment to improve extraction efficiency and polyphenol extract richness from grape pomace. Effect on antioxidant bioactivity. Food and Bioproducts Processing, 106, 162-170. https://doi.org/10.1016/j.fbp.2017.09.007
  • Arriola, N. D. A., Chater, P. I., Wilcox, M., Lucini, L., Rocchetti, G., Dalmina, M., ... & Amboni, R. D. D. M. C. (2019). Encapsulation of stevia rebaudiana Bertoni aqueous crude extracts by ionic gelation–Effects of alginate blends and gelling solutions on the polyphenolic profile. Food chemistry, 275, 123-134. https://doi.org/10.1016/j.foodchem.2018.09.086
  • Aswathy, S., Suresha, G., Sneha, N., & Sadananda, G. (2019). Microencapsulation of lycopene rich cherry tomato powder using spray drying. International Journal of Chemical Studies, 7(1), 2270-2277
  • Azabou, S., Sebii, H., Taheur, F. B., Abid, Y., Jridi, M., & Nasri, M. (2020). Phytochemical profile and antioxidant properties of tomato by-products as affected by extraction solvents and potential application in refined olive oils. Food Bioscience, 36, 100664. https://doi.org/10.1016/j.fbio.2020.100664
  • Başyiğit, B., Sağlam, H., Kandemir, Ş., Karaaslan, A., & Karaaslan, M. (2020). Microencapsulation of sour cherry oil by spray drying: Evaluation of physical morphology, thermal properties, storage stability, and antimicrobial activity. Powder Technology, 364, 654-663. https://doi.org/10.1016/j.powtec.2020.02.035
  • Başyiğit, B., Yücetepe, M., Karaaslan, A., & Karaaslan, M. (2021). High efficiency microencapsulation of extra virgin olive oil (EVOO) with novel carrier agents: Fruit proteins. Materials Today Communications, 28, 102618. https://doi.org/10.1016/j.mtcomm.2021.102618
  • Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292
  • Bezerra, C. V., Amante, E. R., de Oliveira, D. C., Rodrigues, A. M., & da Silva, L. H. M. (2013). Green banana (Musa cavendishii) flour obtained in spouted bed–Effect of drying on physico-chemical, functional and morphological characteristics of the starch. Industrial crops and products, 41, 241-249. https://doi.org/10.1016/j.indcrop.2012.04.035
  • Bhandari, B. R., Datta, N., & Howes, T. (1997). Problems associated with spray drying of sugar-rich foods. Drying technology, 15(2), 671-684. https://doi.org/10.1080/07373939708917253
  • Bozkurt, E., Sıcak, Y., Oruç-Emre, E. E., Iyidoğan, A. K., & Öztürk, M. (2020). Design and bioevaluation of novel hydrazide-hydrazones derived from 4-acetyl-N-substituted benzenesulfonamide. Russian Journal of Bioorganic Chemistry, 46, 702-714. https://doi .org/10.1134/S1068162020050052
  • Caliskan, G., & Dirim, S. N. (2013). The effects of the different drying conditions and the amounts of maltodextrin addition during spray drying of sumac extract. Food and bioproducts Processing, 91(4), 539-548. https://doi.org/10.1016/j.fbp.2013.06.004
  • Çam, M., İçyer, N. C., & Erdoğan, F. (2014). Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional food development. LWT-Food Science and Technology, 55(1), 117-123. https://doi.org/10.1016/j.lwt.2013.09.011
  • Cam, M., Basyigit, B., Alasalvar, H., Yilmaztekin, M., Ahhmed, A., Sagdic, O., ... & Telci, I. (2020). Bioactive properties of powdered peppermint and spearmint extracts: Inhibition of key enzymes linked to hypertension and type 2 diabetes. Food Bioscience, 35, 100577. https://doi.org/10.1016/j.fbio.2020.100577
  • Chong, S. Y., & Wong, C. W. (2017). Effect of spray dryer inlet temperature and maltodextrin concentration on colour profile and total phenolic content of Sapodilla (Manilkara zapota) powder. International Food Research Journal, 24(6), 2543-2548
  • Coelho, M. C., Rodrigues, A. S., Teixeira, J. A., & Pintado, M. E. (2023). Integral valorisation of tomato by-products towards bioactive compounds recovery: Human health benefits. Food Chemistry, 410, 135319. https://doi.org/10.1016/j.foodchem.2022.135319
  • Çam, M., Hışıl, Y., & Durmaz, G. (2009). Classification of eight pomegranate juices based on antioxidant capacity measured by four methods. Food chemistry, 112(3), 721-726. https://doi.org/10.1016/j.foodchem.2008.06.009
  • Elbadrawy, E., & Sello, A. (2016). Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arabian Journal of Chemistry, 9, S1010-S1018. https://doi.org/10.1016/j.arabjc.2011.11.011
  • FAO, 2020. Erişim adresi: https://www.fao.org/faostat/en/#data/QCL
  • Farid, E., Mounir, S., Talaat, E., Elnemr, S., & Siliha, H. (2022). Effect of foaming parameters on the physical and phytochemical properties of tomato powder. Food Science and Biotechnology, 31(11), 1423-1431. https://doi.org/10.1007/s10068-022-01125-9 García, P., Fredes, C., Cea, I., Lozano-Sánchez, J., Leyva-Jiménez, F. J., Robert, P., ... & Jimenez, P. (2021). Recovery of bioactive compounds from pomegranate (Punica granatum L.) peel using pressurized liquid extraction. Foods, 10(2), 203. https://doi.org/10.3390/foods10020203
  • Gheonea, I., Aprodu, I., Cîrciumaru, A., Râpeanu, G., Bahrim, G. E., & Stănciuc, N. (2021). Microencapsulation of lycopene from tomatoes peels by complex coacervation and freeze-drying: Evidences on phytochemical profile, stability and food applications. Journal of Food Engineering, 288, 110166. https://doi.org/10.1016/j.jfoodeng.2020.110166
  • Ishrat, S. A., Naik, H. R., Zargar, I. A., Wani, S. M., & Altaf, U. (2020). Investigation of the physical properties of tomato powder prepared by spray drying technology. IJCS, 8(1), 1071-1074. https://doi.org/10.22271/chemi.2020.v8.i1n.8395
  • Jaya, S., Das, H., & Mani, S. (2006). Optimization of maltodextrin and tricalcium phosphate for producing vacuum dried mango powder. International Journal of Food Properties, 9(1), 13-24. https://doi.org/10.1080/10942910500217666
  • Jorge, A., Sauer Leal, E., Sequinel, R., Sequinel, T., Kubaski, E. T., & Tebcherani, S. M. (2018). Changes in the composition of tomato powder (Lycopersicon esculentum Mill) resulting from different drying methods. Journal of food processing and preservation, 42(5), e13595. https://doi.org/10.1111/jfpp.13595
  • Kadiroğlu, P. (2018). FTIR spectroscopy for prediction of quality parameters and antimicrobial activity of commercial vinegars with chemometrics. Journal of the Science of Food and Agriculture, 98(11), 4121-4127. https://doi.org/10.1002/jsfa.8929
  • Karakuş, M. Ş., Akalan, M., Yücetepe, M., Akay, K. B., Karaaslan, A., Başyiğit, B., & Karaaslan, M. (2023). Kullanıma hazır suda çözünebilir keçiboynuzu kabuğu tozu üretiminin yanıt yüzey yöntemi ile çift aşamalı optimizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(2), 1-1. https://doi.org/10.28948/ngumuh.1205063
  • Karrar, E., Mahdi, A. A., Sheth, S., Ahmed, I. A. M., Manzoor, M. F., Wei, W., & Wang, X. (2021). Effect of maltodextrin combination with gum arabic and whey protein isolate on the microencapsulation of gurum seed oil using a spray-drying method. International Journal of Biological Macromolecules, 171, 208-216. https://doi.org/10.1016/j.ijbiomac.2020.12.045
  • Knoblich, M., Anderson, B., & Latshaw, D. (2005). Analyses of tomato peel and seed byproducts and their use as a source of carotenoids. Journal of the Science of Food and Agriculture, 85(7), 1166-1170. https://doi.org/10.1002/jsfa.2091
  • Konwarh, R., Pramanik, S., Devi, K. S. P., Saikia, N., Boruah, R., Maiti, T. K., ... & Karak, N. (2012). Lycopene coupled ‘trifoliate’polyaniline nanofibers as multi-functional biomaterial. Journal of Materials Chemistry, 22(30), 15062-15070. https://doi.org/10.1039/C2JM32530F
  • Lavecchia, R., & Zuorro, A. (2008). Improved lycopene extraction from tomato peels using cell-wall degrading enzymes. European Food Research and Technology, 228, 153-158. https://doi.org/10.1007/s00217-008-0897-8
  • Li, J., Pettinato, M., Casazza, A. A., & Perego, P. (2022). A Comprehensive Optimization of Ultrasound-Assisted Extraction for Lycopene Recovery from Tomato Waste and Encapsulation by Spray Drying. Processes, 10(2), 308. https://doi.org/10.3390/pr10020308
  • Li, Q., Li, J., Li, H., Xu, R., Yuan, Y., & Cao, J. (2019). Physicochemical properties and functional bioactivities of different bonding state polysaccharides extracted from tomato fruit. Carbohydrate polymers, 219, 181-190. https://doi.org/10.1016/j.carbpol.2019.05.020
  • Liu, F., Cao, X., Wang, H., & Liao, X. (2010). Changes of tomato powder qualities during storage. Powder Technology, 204(1), 159-166. https://doi.org/10.1016/j.powtec.2010.08.002
  • Manjula, B., Pooja, M. R., Aruna, R., Leelavathi, N., Rekha, A. K., & Shiny, G. (2023). Development of instant tomato powder using different drying technology. The Pharma Innovation Journal, 12(1): 2686-2690
  • Pan, X., Niu, G., & Liu, H. (2002). Comparison of microwave-assisted extraction and conventional extraction techniques for the extraction of tanshinones from Salvia miltiorrhiza bunge. Biochemical Engineering Journal, 12(1), 71-77. https://doi.org/10.1016/S1369-703X(02)00039-6
  • Pieper, J. R., & Barrett, D. M. (2009). Effects of organic and conventional production systems on quality and nutritional parameters of processing tomatoes. Journal of the Science of Food and Agriculture, 89(2), 177-194. https://doi.org/10.1002/jsfa.3437
  • Ranveer, R. C., Patil, S. N., & Sahoo, A. K. (2013). Effect of different parameters on enzyme-assisted extraction of lycopene from tomato processing waste. Food and Bioproducts Processing, 91(4), 370-375. https://doi.org/10.1016/j.fbp.2013.01.006
  • Romano, N., Ureta, M. M., Guerrero-Sánchez, M., & Gómez-Zavaglia, A. (2020). Nutritional and technological properties of a quinoa (Chenopodium quinoa Willd.) spray-dried powdered extract. Food Research International, 129, 108884. https://doi.org/10.1016/j.foodres.2019.108884
  • Quek, S. Y., Chok, N. K., & Swedlund, P. (2007). The physicochemical properties of spray-dried watermelon powders. Chemical Engineering and Processing: Process Intensification, 46(5), 386-392. https://doi.org/10.1016/j.cep.2006.06.020
  • Sharayei, P., Azarpazhooh, E., Zomorodi, S., & Ramaswamy, H. S. (2019). Ultrasound assisted extraction of bioactive compounds from pomegranate (Punica granatum L.) peel. Lwt, 101, 342-350. https://doi.org/10.1016/j.lwt.2018.11.031
  • Shwetha, M. S., Sinija, V. R., Durgadevi, M., Yadav, B. K., & Shanmugasundaram, S. (2018). Functional and Morphological Studies of Organic and Inorganic Tomatoes. Pharmacognosy Journal, 10(4). https://doi.org/10.5530/pj.2018.4.119
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
  • Southon, S. (2000). Increased fruit and vegetable consumption within the EU: potential health benefits. Food Research International, 33(3-4), 211-217. https://doi.org/10.1016/S0963-9969(00)00036-3
  • Souza, A. L., Hidalgo-Chávez, D. W., Pontes, S. M., Gomes, F. S., Cabral, L. M., & Tonon, R. V. (2018). Microencapsulation by spray drying of a lycopene-rich tomato concentrate: Characterization and stability. LWT, 91, 286-292. https://doi.org/10.1016/j.lwt.2018.01.053
  • Strati, I. F., & Oreopoulou, V. (2014). Recovery of carotenoids from tomato processing by-products–a review. Food research international, 65, 311-321. https://doi.org/10.1016/j.foodres.2014.09.032
  • Szabo, K., Cătoi, A. F., & Vodnar, D. C. (2018). Bioactive compounds extracted from tomato processing by-products as a source of valuable nutrients. Plant foods for human nutrition, 73, 268-277. https://doi.org/10.1007/s11130-018-0691-0
  • Turchiuli, C., Munguia, M. J., Sanchez, M. H., Ferre, H. C., & Dumoulin, E. (2014). Use of different supports for oil encapsulation in powder by spray drying. Powder Technology, 255, 103-108. https://doi.org/10.1016/j.powtec.2013.08.026
  • Vardin, H., & Yasar, M. (2012). Optimisation of pomegranate (Punica Granatum L.) juice spray‐drying as affected by temperature and maltodextrin content. International Journal of Food Science & Technology, 47(1), 167-176. https://doi.org/10.1111/j.1365-2621.2011.02823.x
  • Yüksekkaya, Ş., Başyiğit, B., Sağlam, H., Pekmez, H., Cansu, Ü., Karaaslan, A., & Karaaslan, M. (2021). Valorization of fruit processing by-products: Free, esterified, and insoluble bound phytochemical extraction from cherry (Prunus avium) tissues and their biological activities. Journal of Food Measurement and Characterization, 15, 1092-1107. https://doi.org/10.1007/s11694-020-00698-5
  • Zhang, L., Zeng, X., Fu, N., Tang, X., Sun, Y., & Lin, L. (2018). Maltodextrin: A consummate carrier for spray-drying of xylooligosaccharides. Food research international, 106, 383-393. https://doi.org/10.1016/j.foodres.2018.01.004
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Gıda Mühendisliği / Food Engineering
Yazarlar

Mehmet Şükrü Karakuş 0000-0002-1805-8206

Merve Akalan 0000-0002-3926-245X

Bülent Başyiğit 0000-0002-6617-1836

Asliye Karaaslan 0000-0002-3834-0647

Mehmet Karaaslan 0000-0001-8097-9535

Erken Görünüm Tarihi 29 Ağustos 2023
Yayımlanma Tarihi 1 Eylül 2023
Gönderilme Tarihi 1 Mayıs 2023
Kabul Tarihi 5 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 13 Sayı: 3

Kaynak Göster

APA Karakuş, M. Ş., Akalan, M., Başyiğit, B., Karaaslan, A., vd. (2023). Domates Kabuğu Fenolikleri: Mikrodalga Destekli Ekstraksiyon Koşullarının Optimizasyonu ve Mikroenkapsülasyonu. Journal of the Institute of Science and Technology, 13(3), 1755-1767. https://doi.org/10.21597/jist.1290953
AMA Karakuş MŞ, Akalan M, Başyiğit B, Karaaslan A, Karaaslan M. Domates Kabuğu Fenolikleri: Mikrodalga Destekli Ekstraksiyon Koşullarının Optimizasyonu ve Mikroenkapsülasyonu. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2023;13(3):1755-1767. doi:10.21597/jist.1290953
Chicago Karakuş, Mehmet Şükrü, Merve Akalan, Bülent Başyiğit, Asliye Karaaslan, ve Mehmet Karaaslan. “Domates Kabuğu Fenolikleri: Mikrodalga Destekli Ekstraksiyon Koşullarının Optimizasyonu Ve Mikroenkapsülasyonu”. Journal of the Institute of Science and Technology 13, sy. 3 (Eylül 2023): 1755-67. https://doi.org/10.21597/jist.1290953.
EndNote Karakuş MŞ, Akalan M, Başyiğit B, Karaaslan A, Karaaslan M (01 Eylül 2023) Domates Kabuğu Fenolikleri: Mikrodalga Destekli Ekstraksiyon Koşullarının Optimizasyonu ve Mikroenkapsülasyonu. Journal of the Institute of Science and Technology 13 3 1755–1767.
IEEE M. Ş. Karakuş, M. Akalan, B. Başyiğit, A. Karaaslan, ve M. Karaaslan, “Domates Kabuğu Fenolikleri: Mikrodalga Destekli Ekstraksiyon Koşullarının Optimizasyonu ve Mikroenkapsülasyonu”, Iğdır Üniv. Fen Bil Enst. Der., c. 13, sy. 3, ss. 1755–1767, 2023, doi: 10.21597/jist.1290953.
ISNAD Karakuş, Mehmet Şükrü vd. “Domates Kabuğu Fenolikleri: Mikrodalga Destekli Ekstraksiyon Koşullarının Optimizasyonu Ve Mikroenkapsülasyonu”. Journal of the Institute of Science and Technology 13/3 (Eylül 2023), 1755-1767. https://doi.org/10.21597/jist.1290953.
JAMA Karakuş MŞ, Akalan M, Başyiğit B, Karaaslan A, Karaaslan M. Domates Kabuğu Fenolikleri: Mikrodalga Destekli Ekstraksiyon Koşullarının Optimizasyonu ve Mikroenkapsülasyonu. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:1755–1767.
MLA Karakuş, Mehmet Şükrü vd. “Domates Kabuğu Fenolikleri: Mikrodalga Destekli Ekstraksiyon Koşullarının Optimizasyonu Ve Mikroenkapsülasyonu”. Journal of the Institute of Science and Technology, c. 13, sy. 3, 2023, ss. 1755-67, doi:10.21597/jist.1290953.
Vancouver Karakuş MŞ, Akalan M, Başyiğit B, Karaaslan A, Karaaslan M. Domates Kabuğu Fenolikleri: Mikrodalga Destekli Ekstraksiyon Koşullarının Optimizasyonu ve Mikroenkapsülasyonu. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(3):1755-67.