Karbon Kaynağı Olarak Atık Ekmeklerin Kullanılmasıyla Elde Edilen Ksantan Gamların Teknolojik Özellikleri ve Model Gıda Olarak Pudingteki Performansı
Yıl 2019,
, 402 - 411, 30.09.2019
Demet Apaydın
,
Ahmet Şükrü Demirci
,
İbrahim Palabıyık
,
Mustafa Mirik
,
Tuncay Gümüş
Öz
Atık ekmekleri değerlendirmek ve toplam ürün
maliyetini azaltmak için karbon kaynağı olarak atık ekmek hidrolizatının
kullanılmasıyla çeşitli Xanthomonas türleri
tarafından üretilen ksantan gamların sulu çözeltilerinin teknolojik özellikleri
incenlenmiş ve ticari ksantan gam ile karşılaştırılmıştır. E n yüksek su tutma kapasitesi ticari
ksantan gamda tespit edilirken, yağ tutma kapasitesinin X. campestris DSM 19000 and X.
axonopodis pv. begoniae tarafından
üretilen gamlarda ticari gamdan daha yüksek olduğu saptanmıştır. Üretilen
gamlarla puding örnekleri hazırlanmıştır ve Ostwald de Waele modeline göre
pudinglerin davranışı başarıyla tanımlanmıştır. En yüksek K değeri gam ilave
edilmeyen örneklerde 161.2
Pa.sn olarak elde edilmiş olup bunu sırasıyla X. axonopodis pv.begoniae
ve X. hortorum pv.pelargonii tarafından üretilen gamların
ilave edildiği örnekler 139.3 Pa.sn ve 133.2 Pa.sn
değerleri ile takip etmiştir. n değerleri 0,12 ile 0,49 arasında değişmiş olup
gam ilavesi ile artmıştır. Sonuç olarak
bu çalışma, X.
axonopodispv. begoniae ve X.
hortorum pv. pelargonii izolatları tarafından,
substrat olarak atık
ekmeğin kullanılmasıyla üretilen gamlarla hazırlanan puding
örneklerinin açısal frekansa ve kayma hızına daha dayanıklı olduğu ve bu
örneklerin daha sağlam bir jel yapısına sahip olduğunu göstermiştir.
Proje Numarası
TOVAG-114O429
Kaynakça
- Casas, J.A., V.E. and Santos, F. Garcia-Ochoa, 2000. Xanthan gum production under several operational conditions: molecular structure and rheological properties. Enzyme and Microbial Technology 26: 282–291.
- Coffman C.W. andV.V. Garcia 1977. "Functional properties and amino acid content of a protein isolate from mung bean flour" Journal of Food Technology, 12:473-484.
- Dakıa P.A., C. Blecker,C. Roberta,B. Watheleta,M. Paquota, 2008. "Composition and physicochemical properties of locust bean gum extracted from whole seeds by acid or water dehulling pre-treatment" Food Hydrocolloids, 22: 807-818.
- Demirci, A.S., I. Palabıyık, T. Gümüs, S. Özalp, 2017a.Waste Bread as a Biomass Source: Optimization of Enzymatic Hydrolysis and Relation between Rheological Behavior and Glucose Yield. Waste and Biomass Valorization, 8, 775-782.
- Demirci, A.S., I. Palabıyık, T. Gümüs, S. Özalp, 2017b.Yield and rheological properties of exopolysaccharide from a local isolate: Xanthomonas axonopodis pv. vesicatoria. Electronic Journal of Biotechnology, 30, 18-23.
- Demirci, A.S., I. Palabıyık, D., Apaydin, M. Mirik., T. Gümüs, 2019. Xanthan gum biosynthesis using Xanthomonas isolates from waste bread: Process optimization and fermentation kinetics. LWT, 101, 40-47.
- Doublier, J.L. andS. Durand, 2008.A rheological characterization of semi-solid dairy systems.Food Chemistry. 108: 1169-1175.
- Freitas, F.,V.D. Alves, M.A. Reis, 2015. Bacterial polysaccharides: production and applications in cosmetic industry. Polysacch.: Bioactivity Biotechnology. 2017–2043.
- Garcia-Ochoa F, V.E. Santos, J.A. Casas, E. Gomez,2000. Xanthan gum: production, recovery, and properties. Biotechnology Advances. 18: 549–579.Gilani, S.L., G.D, Najafpour, H.D. Heydarzadeh,andH. Zare, 2011. Kinetic models for xanthan gum production using Xanthomonas Campestris from molasses. Chemical Industry & Chemical Engineering Quarterly. 17(2): 179–187.
- Johnson, D.W. 1970. Functional properties of oil seed proteins. Journal of theAmerican Oil Chemists’ Society. 47: 402–407.
- Lim H.S. and G. Narsimhan 2006.Pasting and rheological behaviour of soy protein-based pudding. LWT- Food Science and Technology. 29:343–349
- Luvielmo, M.M. and A.R.P. Scamparini, 2009. Goma xantana: produc¸ ão, recuperac¸ ão, propriedades e aplicac¸ ão. Estudos tecnológicos. 5: 50–67.
- Nussinovitch, A., 1997. Hydrocolloid application – Gum technology in the food and other industries, Londres.Blackie Academic e Professional.155–169, 354 p.
- PalanirajA, V. Jayaraman, 2011.Production, recovery and applications of xanthan gum by Xanthomonas campestris, Journal of Food Engineering. 106: 1–12.
- Phillips, G.O. andP.A Williams., 2009. Handbook of hydrocolloids (2nd ed.), Woodhead Publishing, Cambridge, UK .
- Plank, J., 2004.Applications of biopolymers and other biotechnolog- ical products in building materials. Appl Microbial Biotechnology. 66:1–9.
- Sanderson, G.R., 1981. Applications of Xanthan gum. British Polymer International. 13(2):71-75.
- Yoo S.D., S.W. Harcum, 1999.Xanthan gum production from waste sugar beet pulp. Bioresource Technology. 70: 105-109 .
- Vélez-Ruiz, J., I. Hernando, L. Gonzàlez-Tomàs, I. Pérez-Munuera, A. Quiles, A. Tàrrega, et al. 2006. Rheology and microstructure of custard model systems with cross-linked waxy maize starch. Flavour and Fragrance Journal. 21:30-36.
Technological Properties of Xanthan Gums Obtained from Waste Bread Using as a Carbon Source and Performance in Pudding as Model Food
Yıl 2019,
, 402 - 411, 30.09.2019
Demet Apaydın
,
Ahmet Şükrü Demirci
,
İbrahim Palabıyık
,
Mustafa Mirik
,
Tuncay Gümüş
Öz
Technological properties of aqueous solutions of
xanthan gums produced by various Xanthomonas
species using waste bread (WB) hydrolyzate as a carbon source to reduce the
overall product cost and to utilize waste bread were investigated
and compared with commercial xanthan gum. While the highest water
holding capacity was detected in the commercial xanthan gum, oil holding
capacity was higher in xanthan gums from X. campestris DSM 19000 and X. axonopodis pv. begoniae than commercial gum. Pudding samples were prepared by the
gums obtained and Ostwald de Waele model was successfully described the
behavior. The highest K value were obtained by the sample without gum addition as 161.2 Pa.sn,
this was followed by the sample with the gum from X. axonopodis pv.begoniae
with 139.3 Pa.sn and X.
hortorum pv.pelargonii with 133.2
Pa.sn . n values varied between 0.12 and 0.49 and increased with the
addition of the gum. Therefore,
this study showed that the
pudding samples prepared with the gums from X. axonopodis pv. begoniae and X. hortorum pv. pelargonii isolates using waste bread as substrate were
found to be more resistant to shear rate and angular frequency and had a more
robust gel structure.
Destekleyen Kurum
The Scientific and Technological Research Council of Turkey (TUBITAK)
Proje Numarası
TOVAG-114O429
Teşekkür
We thank The Scientific and Technological Research Council of Turkey (TUBITAK) for financial support (Project Number TOVAG-114O429).
Kaynakça
- Casas, J.A., V.E. and Santos, F. Garcia-Ochoa, 2000. Xanthan gum production under several operational conditions: molecular structure and rheological properties. Enzyme and Microbial Technology 26: 282–291.
- Coffman C.W. andV.V. Garcia 1977. "Functional properties and amino acid content of a protein isolate from mung bean flour" Journal of Food Technology, 12:473-484.
- Dakıa P.A., C. Blecker,C. Roberta,B. Watheleta,M. Paquota, 2008. "Composition and physicochemical properties of locust bean gum extracted from whole seeds by acid or water dehulling pre-treatment" Food Hydrocolloids, 22: 807-818.
- Demirci, A.S., I. Palabıyık, T. Gümüs, S. Özalp, 2017a.Waste Bread as a Biomass Source: Optimization of Enzymatic Hydrolysis and Relation between Rheological Behavior and Glucose Yield. Waste and Biomass Valorization, 8, 775-782.
- Demirci, A.S., I. Palabıyık, T. Gümüs, S. Özalp, 2017b.Yield and rheological properties of exopolysaccharide from a local isolate: Xanthomonas axonopodis pv. vesicatoria. Electronic Journal of Biotechnology, 30, 18-23.
- Demirci, A.S., I. Palabıyık, D., Apaydin, M. Mirik., T. Gümüs, 2019. Xanthan gum biosynthesis using Xanthomonas isolates from waste bread: Process optimization and fermentation kinetics. LWT, 101, 40-47.
- Doublier, J.L. andS. Durand, 2008.A rheological characterization of semi-solid dairy systems.Food Chemistry. 108: 1169-1175.
- Freitas, F.,V.D. Alves, M.A. Reis, 2015. Bacterial polysaccharides: production and applications in cosmetic industry. Polysacch.: Bioactivity Biotechnology. 2017–2043.
- Garcia-Ochoa F, V.E. Santos, J.A. Casas, E. Gomez,2000. Xanthan gum: production, recovery, and properties. Biotechnology Advances. 18: 549–579.Gilani, S.L., G.D, Najafpour, H.D. Heydarzadeh,andH. Zare, 2011. Kinetic models for xanthan gum production using Xanthomonas Campestris from molasses. Chemical Industry & Chemical Engineering Quarterly. 17(2): 179–187.
- Johnson, D.W. 1970. Functional properties of oil seed proteins. Journal of theAmerican Oil Chemists’ Society. 47: 402–407.
- Lim H.S. and G. Narsimhan 2006.Pasting and rheological behaviour of soy protein-based pudding. LWT- Food Science and Technology. 29:343–349
- Luvielmo, M.M. and A.R.P. Scamparini, 2009. Goma xantana: produc¸ ão, recuperac¸ ão, propriedades e aplicac¸ ão. Estudos tecnológicos. 5: 50–67.
- Nussinovitch, A., 1997. Hydrocolloid application – Gum technology in the food and other industries, Londres.Blackie Academic e Professional.155–169, 354 p.
- PalanirajA, V. Jayaraman, 2011.Production, recovery and applications of xanthan gum by Xanthomonas campestris, Journal of Food Engineering. 106: 1–12.
- Phillips, G.O. andP.A Williams., 2009. Handbook of hydrocolloids (2nd ed.), Woodhead Publishing, Cambridge, UK .
- Plank, J., 2004.Applications of biopolymers and other biotechnolog- ical products in building materials. Appl Microbial Biotechnology. 66:1–9.
- Sanderson, G.R., 1981. Applications of Xanthan gum. British Polymer International. 13(2):71-75.
- Yoo S.D., S.W. Harcum, 1999.Xanthan gum production from waste sugar beet pulp. Bioresource Technology. 70: 105-109 .
- Vélez-Ruiz, J., I. Hernando, L. Gonzàlez-Tomàs, I. Pérez-Munuera, A. Quiles, A. Tàrrega, et al. 2006. Rheology and microstructure of custard model systems with cross-linked waxy maize starch. Flavour and Fragrance Journal. 21:30-36.