Sekizinci Sınıf Öğrencilerinin Matematiksel Muhakemeleri İle Uzamsal Yetenekleri Arasındaki İlişki
Yıl 2018,
, 255 - 260, 15.01.2018
Ramazan Gürbüz
,
Emrullah Erdem
,
Mehmet Gülburnu
Öz
Bu çalışmanın amacı matematiksel muhakeme ile uzamsal yetenek arasındaki ilişkiyi belirlemektir. Araştırma, 324 sekizinci sınıf öğrencisinin katılımıyla gerçekleştirilmiştir. "Matematiksel Muhakeme Testi" ve "Uzamsal Yetenek Testi" veri toplama araçları olarak kullanılmıştır. Verilerin analizinde her bir katılımcının test puanları arasındaki Pearson korelasyon katsayısı hesaplanmıştır. Araştırmanın sonuçları, matematiksel muhakemeyle uzamsal yetenek arasında pozitif yönde anlamlı bir ilişki olduğunu göstermiştir. Bu iki matematiksel süreç becerisi arasında ortaya çıkan ilişki, ortaokul öğrencilerinin matematiksel muhakemeleriyle uzamsal yeteneklerinin eş güdümlü geliştirilmesi açısından değerli görülebilir.
Kaynakça
- Accascina, G. and Rogora, E. (2006). Using Cabri3D diagrams for teaching geometry. International Journal for Technology in Mathematics Education, 13(1), 11-22.
- Ball, D. L., and Bass, H. (2003). Making mathematics reasonable in school. In J. Kilpatrick, W. G. Martin. & D. Schifter. (Eds.), A research companion to principles and standards for school mathematics (pp 227-236). Reston, VA: National Council of Teachers of Mathematics.
- Cheng, Y. L. and Mix, K. S. (2014). Spatial training improves children’s mathematics ability. Journal of Cognition and Development, 15(1), 2-11.
- Ekstrom, R. B., French, J. W., Harman, H. H., and Dermen, D. (1976). Manual for kit of factor–referenced cognitive tests. Princeton, NJ: Educational Testing Service.
- English, L. D. (1998). Reasoning by analogy in solving comparison problems. Mathematical Cognition, 4(2), 125-146.
- Erdem, E., and Gürbüz, R. (2015). An analysis of seventh-grade students’ mathematical reasoning. Cukurova University Faculty of Education Journal, 44(1), 123–142.
- Erdem, E. (2016). Matematiksel muhakeme ile okuduğunu anlama arasındaki ilişki: 8. sınıf örneği. Necatibey Eğitim Fakültesi Elektronik Fen Ve Matematik Eğitimi Dergisi, 10(1), 393-414.
- Fast, G. R. (1997). Using analogies to overcome student teachers’ probability misconceptions. Journalof Mathematical Behavior, 16(4), 325-344.
- Fennema, E. (1974). Mathematics, spatial ability and the sexes. Paper presented at the annual meeting of the American Educational Research Association, Chicago, Illinois.
- Fennema, E., and Tartre, L. A. (1985). The use of spatial visualization in mathematics by girls and boys. Journal for Research in Mathematics Education, 16(3), 184–206.
- Fraenkel, J. R., Wallen, N. E., and Hyun, H. H. (2012). How to design and evaluate research in education (8th ed.). New York: McGraw Hill.
- Ganley, C. M. and Vasilyeva, M. (2011). Sex differences in the relation between math performance, spatial skills, and attitudes. Journal of Applied Developmental Psychology, 32(4), 235-242.
- Gürbüz, R. (2010). The effect of activity based instruction on conceptual development of seventh grade students in probability. International Journal of Mathematical Education in Science and Technology, 41(6), 743-767,
- Gürbüz, R., and Erdem, E. (2014). Matematiksel ve olasılıksal muhakeme arasındaki ilişkinin incelenmesi: 7. sınıf örneği. Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 16, 205-230.
- Guay, R. B., and McDaniel, E. D. (1977). The relationship between mathematics achievement and spatial abilities among elementary school children. Journal for Research in Mathematics Education, 8(3), 211–215.
- Hallowell, D. A., Okamoto, Y., Romo, L. F., and La Joy, J. R. (2015). First-graders’ spatial-mathematical reasoning about plane and solid shapes and their representations. ZDM Mathematics Education, 47, 363–375.
- Hatfield, M. M., Edwards, N. T., and Bitter, G. G. (1997). Mathematics methods for elementary and middle school teachers (3rd ed.). Boston: Allyn and Bacon.
- Hegarty, M., and Sims, V. K. (1994). Individual differences in mental animation during mechanical reasoning. Memory & Cognition, 22(4), 411–430.
- Holmes, J., Adams, J. W., and Hamilton, C. J. (2008). The relationship between visuospatial sketchpad capacity and children’s mathematical skills. European Journal of Cognitive Psychology, 20(2), 272–289.
- Hubbard, E. M., Piazza, M., Pinel, P., and Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6(6), 435–448.
- Lithner, J. (2008). A research framework for creative and imitative reasoning. Educational Studies in Mathematics, 67, 255-276.
- Lohman, D. F. (1993). Spatial ability and G. Paper presented at the first Spearman Seminar, University of Plymouth.
- Lubinski, D. (2010). Spatial ability and STEM: A sleeping giant for talent identification and development. Personality and Individual Differences, 49, 344–351.
- Mandacı Şahin, S. (2007). 8. Sınıf öğrencilerinin matematik gücünün belirlenmesi. Doktora tezi. Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon.
- McIntosh, A., Reys, R. E., and Reys, B. J. (1997). Mental computation in the middle grades: The importance of thinking strategies. Mathematics Teaching in the Middle School, 2(5), 322–327.
- Ministry of National Education (MNE) (2013). Middle school mathematics 5-8. classes teaching program. Ankara: Head Council of Education and Morality.
- National Council of Teachers of Mathematics [NCTM] (2000). Principles and standards for school mathematics. Reston: Virginia.
- Newcombe, N. S. (2010). Picture this: Increasing math and science learning by improving spatial thinking. American Educator, 34(2), 29–35.
- Niss, M. (2003). Mathematical competencies and the learning of mathematics: The Danish KOM project. Third Mediterranean conference on mathematics education (pp. 115–124).
- Olkun, S. (2003). Making connections: Improving spatial abilities with engineering drawing activities. International Journal of Mathematics Teaching and Learning, April2003. http://www.cimt.plymouth.ac.uk/journal/sinanolkun.pdf
- Polya, G. (1981). Mathematical discovery: on understanding, learning, and teaching problem solving. New York: Wiley.
- Turğut, M. (2007). İlköğretim II. kademede öğrencilerin uzamsal yeteneklerinin incelenmesi. Yüksek lisans tezi, Dokuz Eylül Üniversitesi, Eğitim Bilimleri Enstitüsü, İzmir.
- Turğut, M., and Yılmaz, S. (2012). Investigation of 7th and 8th grade students’ spatial ability. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 19, 69-79.
- Umay, A. (2003). Mathematical reasoning ability. Hacettepe University Journal of Education, 24, 234-243.
- Umay, A., and Kaf, Y. (2005). A study on flawed reasoning in mathematics. Hacettepe University Journal of Education, 28, 188-195.
- Umilta`, C., Priftis, K., and Zorzi, M. (2009).The spatial representation of numbers: Evidence from neglect and pseudoneglect. Experimental Brain Research, 192(3), 561–569.
- Vansteensel, M. J., Bleichner, M. G., Freudenburg, Z. V., Hermes, D., Aarnoutse, E. J., Leijten, F. S., ... & Ramsey, N. F. (2014). Spatiotemporal characteristics of electrocortical brain activity during mental calculation. Human Brain Mapping, 35(12), 5903–5920.
The Relationship Between Mathematical Reasoning and Spatial Ability of Eighth Grade Students
Yıl 2018,
, 255 - 260, 15.01.2018
Ramazan Gürbüz
,
Emrullah Erdem
,
Mehmet Gülburnu
Öz
The aim of this study is to determine the relationship between mathematical reasoning and spatial ability. The present study was carried out with 324 eighth-grade students. "Mathematical Reasoning Test" and "Spatial Ability Test" were used as data collection tools. In analyzing the data, Pearson’s correlation coefficient between participants’ scores of each test was computed. Results show that there is a significant positive correlation between mathematical reasoning and spatial ability. The relationship that emerges between these two mathematical process abilities can be seen as valuable in terms of co-ordinated development of mathematical reasoning with the spatial skills of middle school students.
Kaynakça
- Accascina, G. and Rogora, E. (2006). Using Cabri3D diagrams for teaching geometry. International Journal for Technology in Mathematics Education, 13(1), 11-22.
- Ball, D. L., and Bass, H. (2003). Making mathematics reasonable in school. In J. Kilpatrick, W. G. Martin. & D. Schifter. (Eds.), A research companion to principles and standards for school mathematics (pp 227-236). Reston, VA: National Council of Teachers of Mathematics.
- Cheng, Y. L. and Mix, K. S. (2014). Spatial training improves children’s mathematics ability. Journal of Cognition and Development, 15(1), 2-11.
- Ekstrom, R. B., French, J. W., Harman, H. H., and Dermen, D. (1976). Manual for kit of factor–referenced cognitive tests. Princeton, NJ: Educational Testing Service.
- English, L. D. (1998). Reasoning by analogy in solving comparison problems. Mathematical Cognition, 4(2), 125-146.
- Erdem, E., and Gürbüz, R. (2015). An analysis of seventh-grade students’ mathematical reasoning. Cukurova University Faculty of Education Journal, 44(1), 123–142.
- Erdem, E. (2016). Matematiksel muhakeme ile okuduğunu anlama arasındaki ilişki: 8. sınıf örneği. Necatibey Eğitim Fakültesi Elektronik Fen Ve Matematik Eğitimi Dergisi, 10(1), 393-414.
- Fast, G. R. (1997). Using analogies to overcome student teachers’ probability misconceptions. Journalof Mathematical Behavior, 16(4), 325-344.
- Fennema, E. (1974). Mathematics, spatial ability and the sexes. Paper presented at the annual meeting of the American Educational Research Association, Chicago, Illinois.
- Fennema, E., and Tartre, L. A. (1985). The use of spatial visualization in mathematics by girls and boys. Journal for Research in Mathematics Education, 16(3), 184–206.
- Fraenkel, J. R., Wallen, N. E., and Hyun, H. H. (2012). How to design and evaluate research in education (8th ed.). New York: McGraw Hill.
- Ganley, C. M. and Vasilyeva, M. (2011). Sex differences in the relation between math performance, spatial skills, and attitudes. Journal of Applied Developmental Psychology, 32(4), 235-242.
- Gürbüz, R. (2010). The effect of activity based instruction on conceptual development of seventh grade students in probability. International Journal of Mathematical Education in Science and Technology, 41(6), 743-767,
- Gürbüz, R., and Erdem, E. (2014). Matematiksel ve olasılıksal muhakeme arasındaki ilişkinin incelenmesi: 7. sınıf örneği. Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 16, 205-230.
- Guay, R. B., and McDaniel, E. D. (1977). The relationship between mathematics achievement and spatial abilities among elementary school children. Journal for Research in Mathematics Education, 8(3), 211–215.
- Hallowell, D. A., Okamoto, Y., Romo, L. F., and La Joy, J. R. (2015). First-graders’ spatial-mathematical reasoning about plane and solid shapes and their representations. ZDM Mathematics Education, 47, 363–375.
- Hatfield, M. M., Edwards, N. T., and Bitter, G. G. (1997). Mathematics methods for elementary and middle school teachers (3rd ed.). Boston: Allyn and Bacon.
- Hegarty, M., and Sims, V. K. (1994). Individual differences in mental animation during mechanical reasoning. Memory & Cognition, 22(4), 411–430.
- Holmes, J., Adams, J. W., and Hamilton, C. J. (2008). The relationship between visuospatial sketchpad capacity and children’s mathematical skills. European Journal of Cognitive Psychology, 20(2), 272–289.
- Hubbard, E. M., Piazza, M., Pinel, P., and Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6(6), 435–448.
- Lithner, J. (2008). A research framework for creative and imitative reasoning. Educational Studies in Mathematics, 67, 255-276.
- Lohman, D. F. (1993). Spatial ability and G. Paper presented at the first Spearman Seminar, University of Plymouth.
- Lubinski, D. (2010). Spatial ability and STEM: A sleeping giant for talent identification and development. Personality and Individual Differences, 49, 344–351.
- Mandacı Şahin, S. (2007). 8. Sınıf öğrencilerinin matematik gücünün belirlenmesi. Doktora tezi. Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon.
- McIntosh, A., Reys, R. E., and Reys, B. J. (1997). Mental computation in the middle grades: The importance of thinking strategies. Mathematics Teaching in the Middle School, 2(5), 322–327.
- Ministry of National Education (MNE) (2013). Middle school mathematics 5-8. classes teaching program. Ankara: Head Council of Education and Morality.
- National Council of Teachers of Mathematics [NCTM] (2000). Principles and standards for school mathematics. Reston: Virginia.
- Newcombe, N. S. (2010). Picture this: Increasing math and science learning by improving spatial thinking. American Educator, 34(2), 29–35.
- Niss, M. (2003). Mathematical competencies and the learning of mathematics: The Danish KOM project. Third Mediterranean conference on mathematics education (pp. 115–124).
- Olkun, S. (2003). Making connections: Improving spatial abilities with engineering drawing activities. International Journal of Mathematics Teaching and Learning, April2003. http://www.cimt.plymouth.ac.uk/journal/sinanolkun.pdf
- Polya, G. (1981). Mathematical discovery: on understanding, learning, and teaching problem solving. New York: Wiley.
- Turğut, M. (2007). İlköğretim II. kademede öğrencilerin uzamsal yeteneklerinin incelenmesi. Yüksek lisans tezi, Dokuz Eylül Üniversitesi, Eğitim Bilimleri Enstitüsü, İzmir.
- Turğut, M., and Yılmaz, S. (2012). Investigation of 7th and 8th grade students’ spatial ability. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 19, 69-79.
- Umay, A. (2003). Mathematical reasoning ability. Hacettepe University Journal of Education, 24, 234-243.
- Umay, A., and Kaf, Y. (2005). A study on flawed reasoning in mathematics. Hacettepe University Journal of Education, 28, 188-195.
- Umilta`, C., Priftis, K., and Zorzi, M. (2009).The spatial representation of numbers: Evidence from neglect and pseudoneglect. Experimental Brain Research, 192(3), 561–569.
- Vansteensel, M. J., Bleichner, M. G., Freudenburg, Z. V., Hermes, D., Aarnoutse, E. J., Leijten, F. S., ... & Ramsey, N. F. (2014). Spatiotemporal characteristics of electrocortical brain activity during mental calculation. Human Brain Mapping, 35(12), 5903–5920.