Review
BibTex RIS Cite

Süt Endüstrisinde Kullanılan Isı Değiştiricilerde Kalıntı Oluşumu

Year 2018, Volume: 16 Issue: 4, 450 - 457, 31.12.2018
https://doi.org/10.24323/akademik-gida.505536

Abstract

Isı değiştiricilerde biriken süt
kalıntısı, sütte uygulanan ısıl işlemin etkinliğinin azalmasına neden olmakta
ve fazladan ısı direnci oluşumuna bağlı olarak sistemde ısı iletim kayıplarına
yol açmaktadır. Ayrıca ısı
değiştiricilerde oluşan kalıntı tabakası, ısı iletim yüzeylerinde halk
sağlığını tehdit eden mikroorganizmalar için besi ortamı olarak görev
yapmaktadır. Süt endüstrisinde ısıl işlem sırasında kalıntı oluşumu, ekonomik
kayıplara neden olan ve uzun yıllardır çözümü üzerinde çalışılan bir sorun olmuştur.
Isı değiştiricilerde süt kalıntısı sorununun çözümüne yönelik çalışmalarda, kalıntı
oluşum ve temizleme mekanizmalarının anlaşılması ve kalıntı oluşumuna etkisi
olan parametrelerin belirlenmesi üzerine odaklanılmıştır. Bu derlemede sütün
bileşiminin, kullanılan ısı değiştiricinin yüzey özelliklerinin ve uygulanan
ısıl işlem parametrelerinin süte uygulanan ısıl işlem sırasında kalıntı
oluşumuna etkisi ve oluşan kalıntının tespit edilmesinde ve temizlenmesinde
kullanılan yöntemler hakkında bilgi verilmesi amaçlanmaktadır.  

References

  • [1] Urgu, M., Saatli, T.E., Türk, A., Koca, N. (2017). Isıl işlem görmüş içme sütlerinde (pastörize, UHT ve laktozsuz UHT süt) hidroksimetilfurfural içeriğinin belirlenmesi. Akademik Gıda, 15(3), 249-255.
  • [2] Agarwal, P., Sikand, A., Shanthi, V. (2014). Application of heat exchangers in bioprocess industry: A review. International Journal of Pharmacy and Pharmaceutical Sciences, 6(1), 24-28.
  • [3] Earle, R.L., Earle, M.D. (2004). Unit Operations in Food Processing, Web Edition 6: Heat transfer applications. http://www.nzifst.org.nz/unitoperations. Erişim tarihi: 16.04.2018.
  • [4] Grijspeerdt, K., Mortier, L., De Block, J., Van Renterghem, R. (2004). Applications of modelling to optimise ultra high temperature milk heat exchangers with respect to fouling. Food Control, 15(2), 117-130.
  • [5] Visser, H., Jeurnink, T.J.M., Delplace, F., Fryer, P., Schrami, J.E. (1997). Fouling and cleaning of heat treatment equipment. Bulletin of the international Dairy Federation, 328, 7-31.
  • [6] Bansal, B., Chen, X.D. (2006). A critical review of milk fouling in heat exchangers. Comprehensive Reviews in Food Science and Food Safety, 5(2), 27-33.
  • [7] Sadeghinezhad, E., Kazi, S.N., Badarudin, A., Zubair, M.N.M., Dehkordi, B.L., Oon, C.S. (2013). A review of milk fouling on heat exchanger surfaces. Reviews in Chemical Engineering, 29(3), 169-188.
  • [8] De Jong, P. (1997). Impact and control of fouling in milk processing. Trends in Food Science and Technology, 8(12), 401-405.
  • [9] Bansal, B., Chen, X.D. (2009). Fouling of heat exchangers by dairy fuids: A review. The Berkeley Electronic Press RP2, 23, 149-57.
  • [10] Delsing, B.M.A., Hiddink, J. (1983). Fouling of heat transfer surfaces by dairy liquids. Netherlands Milk and Dairy Journal, 37, 139-148.
  • [11] Sadeghinezhad, E., Kazi, S.N., Dahari, M., Safaei, M.R., Sadri, R., Badarudin, A. (2015). A comprehensive review of milk fouling on heated surfaces. Critical Reviews in Food Science and Nutrition, 55(12), 1724-1743.
  • [12] Traybal, R.E. (1981). Mass transfer operation. McGraw - Hill Book Company, Singapore. [13] Jeurnink, T.J., Walstra, P., De Kruif, C.G. (1996). Mechanisms of fouling in dairy processing. Netherlands Milk Dairy Journal, 50, 407- 426.
  • [14] Burton, H. (1968). Deposits from whole milk in heat treatment plant: A review and discussion. Journal of Dairy Research, 35(2), 317-330.
  • [15] Paterson, W.R., Fryer, P.J. (1988). A reaction engineering approach to the analysis of fouling. Chemical Engineering Science, 43(7), 1714-1717.
  • [16] Jeurnink, T.J.M. (1996). Milk fouling in heat exchangers. Ph.D. Thesis, Wageningen Agricultural University, 144p, Netherlands.
  • [17] Visser, J., Jeurnink, T.J.M. (1997). Fouling of heat exchangers in the dairy industry. Experimental Thermal and Fluid Science, 14(4), 407-424.
  • [18] Fryer, P.J. (1989). The uses of fouling models in the design of food process plant. Journal of the Society of Dairy Technology, 42(1), 23-29.
  • [19] Belmarbeiny, M.T., Gotham, S.M., Paterson, W.R., Fryer, P.J. (1993). The effect of Reynolds number and fluid temperature in whey protein fouling. Journal of Food Engineering, 19(2), 119-139.
  • [20] Fryer, P.J., Robbins, P.T., Green, C., Schreier, P.J.R., Pritchard, A.M., Hasting, A.P.M. (1996). A statistical model for fouling of a plate heat exchanger by whey protein solution at UHT conditions. Food and Bioproducts Processing: Transactions of the Institution of Chemical Engineers Part C, 74(4), 189-199.
  • [21] Davies, T.J., Henstridge, S.C., Gillham, C.R., Wilson, D.I. (1997). Investigation of whey protein deposit properties using heat flux sensors. Food and Bioproducts Processing: Transactions of the Institution of Chemical Engineers Part C, 75(2), 106-110.
  • [22] Gillham, C.R., Fryer, P.J., Hasting, A.P.M., Wilson, D.I. (1999). Cleaning-in-place of whey protein fouling deposits: Mechanisms controlling cleaning. Food and Bioproducts Processing, 77(2), 127-136.
  • [23] Xin, H., Chen, X.D., Özkan, N. (2002). Whey protein-based gel as a model material for studying initial cleaning mechanisms of milk fouling. Journal of Food Science, 67(7), 2702-2711.
  • [24] Fickak, A., Al-Raisi, A., Chen, X.D. (2011). Effect of whey protein concentration on the fouling and cleaning of a heat transfer surface. Journal of Food Engineering, 104(3), 323-331.
  • [25] Tuan, T.H. (2001). Fouling of stainless steel surfaces by heated whole milk. Ph.D. Thesis, Massey University, Palmerston North, 212p, New Zealand.
  • [26] Bennett, H.A.E. (2007). Aspects of fouling in dairy processing. Ph.D. Thesis, Massey University, Palmerston North, 172p, New Zealand.
  • [27] Walstra, P., Jennes, R., Badings, H.T. (1994). Dairy Chemistry and Physics. Wiley, New York.
  • [28] Burton, H. (1961). A laboratory method for the investigation of milk deposits on heat exchange surfaces. Journal of Dairy Research, 28(3), 255-263.
  • [29] Burton, B.Y.H. (1965). A method for studying the factors in milk which influence the deposition of milk solids on a heated surface. Journal of Dairy Research, 32, 65-78.
  • [30] Gordon, K.P., Hankinson, D.J., Carver, C.E. (1968). Deposition of milk solids on heated surfaces. Journal of Dairy Science, 51(4), 520-526.
  • [31] Walstra, P., Geurts, T.J., Noomen, A., Jellema, A., Boekel, M.A.J.S. (2005). Dairy technology: Principles of milk properties and processes. CRC Press, Boca Raton, Florida, USA.
  • [32] Corredig, M., Dalgleish, D., (1996). Effect of temperature and pH on the interactions of whey proteins with casein micelles in skim milk. Food Research International, 29(1), 49-55.
  • [33] Skudder, P.J., Brooker, B.E., Bonsey, A.D., Alvarez-Guerrero, N.R. (1986). Effect of pH on the formation of deposit from milk on heated surfaces during ultra high temperature processing. Journal of Dairy Research, 53, 75-87.
  • [34] Kumar, C.G., Anand, S. (1998). Significance of microbial biofilms in food industry: A review. International Journal of Food Microbiology, 42(1), 9-27.
  • [35] Yoo, J.A., Hardin, M.T., Chen, X.D. (2006). The influence of milk composition on the growth of Bacillus stearothermophilus. Journal of Food Engineering, 77(1), 96-102.
  • [36] Mozes, N., Marchal, F., Hermesse, M.P., Van Haecht, J.L., Reuliaux, L., Leonard, A.J. (1987). Immobilization of microorganisms by adhesion: Interplay of electrostatic and nonelectrostatic interactions. Biotechnology and Bioengineering, 30(3), 439-450.
  • [37] Swartzel, K.R. (1983). Tubular heat exchanger fouling by milk during ultra high temperature processing. Journal of Food Science, 48(5), 1507-1511.
  • [38] Rakes, P.A., Swartzel, K.R., Jones, V.A. (1986). Deposition of dairy protein-containing fluids on heat exchange surfaces. Biotechnology Progress, 2(4), 210-217.
  • [39] Jindal, S., Anand, S., Huang, K., Goddard, J., Metzger, L., Amamcharla, J. (2016). Evaluation of modified stainless steel surfaces targeted to reduce biofilm formation by common milk sporeformers. Journal of Dairy Science, 99(12), 9502-9513.
  • [40] Yoon, J., Lund, D.B. (1994). Magnetic treatment of milk and surface treatment of plate heat exchangers: Effects on milk fouling. Journal of Food Science, 59(5), 964-980.
  • [41] Britten, B.Y.M., Green, M.L., Boulet, M. (1988). Deposit formation on heated surfaces - effect of interface energetics. Journal of Dairy Research, 55, 551-562.
  • [42] Prakash, S., Datta, N., Deeth, H.C. (2005). Methods of detecting fouling caused by heating of milk. Food Reviews International, 21(3), 267-293.
  • [43] Withers, P. (1996). Ultrasonic, acoustic and optical techniques for the non invasive detection of fouling in food processing equipment. Trends in Food Science and Technology, 7, 293-298.
  • [44] Riverol, C., Napolitano, V. (2005). Estimation of fouling in a plate heat exchanger through the application on neural networks. Journal of Chemical Technology and Biotechnology, 80(5), 594-600.
  • [45] Müller-Steinhagen, H., Malayeri, M.R., Watkinson, A.P. (2011). Heat exchanger fouling: Mitigation and cleaning strategies. Heat Transfer Engineering, 32(3–4), 189-196.
  • [46] Malayeri, M.R., Watkinson, A.P., Conferences, E., Irsee, K., Rosmaninho, R., Rizzo, G. (2013). Anti-] fouling stainless steel based surfaces for milk heating processes. The Berkeley Electronic Press Rp2, (16), 97-102.

Fouling In Heat Exchangers Used In Dairy Industry

Year 2018, Volume: 16 Issue: 4, 450 - 457, 31.12.2018
https://doi.org/10.24323/akademik-gida.505536

Abstract

Milk fouling in heat
exchangers results in a loss of heat transfer in the system due to additional
heat resistance, and leads to a reduction in the effectiveness of heat treatment applied to milk. Furthermore, the presence of fouling
layers in heat exchangers serves as broth for microorganisms in heat transfer
surface, which may threat public health. Fouling during heat treatment has been
a problem to be solved for many years, which causes economic losses in dairy
industry. Studies to overcome this problem in heat exchangers have focused on
understanding the formation and cleaning mechanisms of fouling and determining parameters
that affect the formation of fouling. The aim of this review is to give
information on the effects of milk composition, surface properties of utilized heat
exchanger and applied parameters in heat treatment on the formation of milk
fouling during heat treatment, and methods used for the detection and cleaning
of milk fouling. 

References

  • [1] Urgu, M., Saatli, T.E., Türk, A., Koca, N. (2017). Isıl işlem görmüş içme sütlerinde (pastörize, UHT ve laktozsuz UHT süt) hidroksimetilfurfural içeriğinin belirlenmesi. Akademik Gıda, 15(3), 249-255.
  • [2] Agarwal, P., Sikand, A., Shanthi, V. (2014). Application of heat exchangers in bioprocess industry: A review. International Journal of Pharmacy and Pharmaceutical Sciences, 6(1), 24-28.
  • [3] Earle, R.L., Earle, M.D. (2004). Unit Operations in Food Processing, Web Edition 6: Heat transfer applications. http://www.nzifst.org.nz/unitoperations. Erişim tarihi: 16.04.2018.
  • [4] Grijspeerdt, K., Mortier, L., De Block, J., Van Renterghem, R. (2004). Applications of modelling to optimise ultra high temperature milk heat exchangers with respect to fouling. Food Control, 15(2), 117-130.
  • [5] Visser, H., Jeurnink, T.J.M., Delplace, F., Fryer, P., Schrami, J.E. (1997). Fouling and cleaning of heat treatment equipment. Bulletin of the international Dairy Federation, 328, 7-31.
  • [6] Bansal, B., Chen, X.D. (2006). A critical review of milk fouling in heat exchangers. Comprehensive Reviews in Food Science and Food Safety, 5(2), 27-33.
  • [7] Sadeghinezhad, E., Kazi, S.N., Badarudin, A., Zubair, M.N.M., Dehkordi, B.L., Oon, C.S. (2013). A review of milk fouling on heat exchanger surfaces. Reviews in Chemical Engineering, 29(3), 169-188.
  • [8] De Jong, P. (1997). Impact and control of fouling in milk processing. Trends in Food Science and Technology, 8(12), 401-405.
  • [9] Bansal, B., Chen, X.D. (2009). Fouling of heat exchangers by dairy fuids: A review. The Berkeley Electronic Press RP2, 23, 149-57.
  • [10] Delsing, B.M.A., Hiddink, J. (1983). Fouling of heat transfer surfaces by dairy liquids. Netherlands Milk and Dairy Journal, 37, 139-148.
  • [11] Sadeghinezhad, E., Kazi, S.N., Dahari, M., Safaei, M.R., Sadri, R., Badarudin, A. (2015). A comprehensive review of milk fouling on heated surfaces. Critical Reviews in Food Science and Nutrition, 55(12), 1724-1743.
  • [12] Traybal, R.E. (1981). Mass transfer operation. McGraw - Hill Book Company, Singapore. [13] Jeurnink, T.J., Walstra, P., De Kruif, C.G. (1996). Mechanisms of fouling in dairy processing. Netherlands Milk Dairy Journal, 50, 407- 426.
  • [14] Burton, H. (1968). Deposits from whole milk in heat treatment plant: A review and discussion. Journal of Dairy Research, 35(2), 317-330.
  • [15] Paterson, W.R., Fryer, P.J. (1988). A reaction engineering approach to the analysis of fouling. Chemical Engineering Science, 43(7), 1714-1717.
  • [16] Jeurnink, T.J.M. (1996). Milk fouling in heat exchangers. Ph.D. Thesis, Wageningen Agricultural University, 144p, Netherlands.
  • [17] Visser, J., Jeurnink, T.J.M. (1997). Fouling of heat exchangers in the dairy industry. Experimental Thermal and Fluid Science, 14(4), 407-424.
  • [18] Fryer, P.J. (1989). The uses of fouling models in the design of food process plant. Journal of the Society of Dairy Technology, 42(1), 23-29.
  • [19] Belmarbeiny, M.T., Gotham, S.M., Paterson, W.R., Fryer, P.J. (1993). The effect of Reynolds number and fluid temperature in whey protein fouling. Journal of Food Engineering, 19(2), 119-139.
  • [20] Fryer, P.J., Robbins, P.T., Green, C., Schreier, P.J.R., Pritchard, A.M., Hasting, A.P.M. (1996). A statistical model for fouling of a plate heat exchanger by whey protein solution at UHT conditions. Food and Bioproducts Processing: Transactions of the Institution of Chemical Engineers Part C, 74(4), 189-199.
  • [21] Davies, T.J., Henstridge, S.C., Gillham, C.R., Wilson, D.I. (1997). Investigation of whey protein deposit properties using heat flux sensors. Food and Bioproducts Processing: Transactions of the Institution of Chemical Engineers Part C, 75(2), 106-110.
  • [22] Gillham, C.R., Fryer, P.J., Hasting, A.P.M., Wilson, D.I. (1999). Cleaning-in-place of whey protein fouling deposits: Mechanisms controlling cleaning. Food and Bioproducts Processing, 77(2), 127-136.
  • [23] Xin, H., Chen, X.D., Özkan, N. (2002). Whey protein-based gel as a model material for studying initial cleaning mechanisms of milk fouling. Journal of Food Science, 67(7), 2702-2711.
  • [24] Fickak, A., Al-Raisi, A., Chen, X.D. (2011). Effect of whey protein concentration on the fouling and cleaning of a heat transfer surface. Journal of Food Engineering, 104(3), 323-331.
  • [25] Tuan, T.H. (2001). Fouling of stainless steel surfaces by heated whole milk. Ph.D. Thesis, Massey University, Palmerston North, 212p, New Zealand.
  • [26] Bennett, H.A.E. (2007). Aspects of fouling in dairy processing. Ph.D. Thesis, Massey University, Palmerston North, 172p, New Zealand.
  • [27] Walstra, P., Jennes, R., Badings, H.T. (1994). Dairy Chemistry and Physics. Wiley, New York.
  • [28] Burton, H. (1961). A laboratory method for the investigation of milk deposits on heat exchange surfaces. Journal of Dairy Research, 28(3), 255-263.
  • [29] Burton, B.Y.H. (1965). A method for studying the factors in milk which influence the deposition of milk solids on a heated surface. Journal of Dairy Research, 32, 65-78.
  • [30] Gordon, K.P., Hankinson, D.J., Carver, C.E. (1968). Deposition of milk solids on heated surfaces. Journal of Dairy Science, 51(4), 520-526.
  • [31] Walstra, P., Geurts, T.J., Noomen, A., Jellema, A., Boekel, M.A.J.S. (2005). Dairy technology: Principles of milk properties and processes. CRC Press, Boca Raton, Florida, USA.
  • [32] Corredig, M., Dalgleish, D., (1996). Effect of temperature and pH on the interactions of whey proteins with casein micelles in skim milk. Food Research International, 29(1), 49-55.
  • [33] Skudder, P.J., Brooker, B.E., Bonsey, A.D., Alvarez-Guerrero, N.R. (1986). Effect of pH on the formation of deposit from milk on heated surfaces during ultra high temperature processing. Journal of Dairy Research, 53, 75-87.
  • [34] Kumar, C.G., Anand, S. (1998). Significance of microbial biofilms in food industry: A review. International Journal of Food Microbiology, 42(1), 9-27.
  • [35] Yoo, J.A., Hardin, M.T., Chen, X.D. (2006). The influence of milk composition on the growth of Bacillus stearothermophilus. Journal of Food Engineering, 77(1), 96-102.
  • [36] Mozes, N., Marchal, F., Hermesse, M.P., Van Haecht, J.L., Reuliaux, L., Leonard, A.J. (1987). Immobilization of microorganisms by adhesion: Interplay of electrostatic and nonelectrostatic interactions. Biotechnology and Bioengineering, 30(3), 439-450.
  • [37] Swartzel, K.R. (1983). Tubular heat exchanger fouling by milk during ultra high temperature processing. Journal of Food Science, 48(5), 1507-1511.
  • [38] Rakes, P.A., Swartzel, K.R., Jones, V.A. (1986). Deposition of dairy protein-containing fluids on heat exchange surfaces. Biotechnology Progress, 2(4), 210-217.
  • [39] Jindal, S., Anand, S., Huang, K., Goddard, J., Metzger, L., Amamcharla, J. (2016). Evaluation of modified stainless steel surfaces targeted to reduce biofilm formation by common milk sporeformers. Journal of Dairy Science, 99(12), 9502-9513.
  • [40] Yoon, J., Lund, D.B. (1994). Magnetic treatment of milk and surface treatment of plate heat exchangers: Effects on milk fouling. Journal of Food Science, 59(5), 964-980.
  • [41] Britten, B.Y.M., Green, M.L., Boulet, M. (1988). Deposit formation on heated surfaces - effect of interface energetics. Journal of Dairy Research, 55, 551-562.
  • [42] Prakash, S., Datta, N., Deeth, H.C. (2005). Methods of detecting fouling caused by heating of milk. Food Reviews International, 21(3), 267-293.
  • [43] Withers, P. (1996). Ultrasonic, acoustic and optical techniques for the non invasive detection of fouling in food processing equipment. Trends in Food Science and Technology, 7, 293-298.
  • [44] Riverol, C., Napolitano, V. (2005). Estimation of fouling in a plate heat exchanger through the application on neural networks. Journal of Chemical Technology and Biotechnology, 80(5), 594-600.
  • [45] Müller-Steinhagen, H., Malayeri, M.R., Watkinson, A.P. (2011). Heat exchanger fouling: Mitigation and cleaning strategies. Heat Transfer Engineering, 32(3–4), 189-196.
  • [46] Malayeri, M.R., Watkinson, A.P., Conferences, E., Irsee, K., Rosmaninho, R., Rizzo, G. (2013). Anti-] fouling stainless steel based surfaces for milk heating processes. The Berkeley Electronic Press Rp2, (16), 97-102.
There are 45 citations in total.

Details

Primary Language Turkish
Journal Section Review Papers
Authors

Hatice Kübra Kızılay This is me 0000-0001-5042-7334

Firuze Ergin 0000-0002-9751-1020

Muammer Demir 0000-0003-4163-8791

Ahmet Küçükçetin 0000-0002-0132-1581

Publication Date December 31, 2018
Submission Date May 13, 2018
Published in Issue Year 2018 Volume: 16 Issue: 4

Cite

APA Kızılay, H. K., Ergin, F., Demir, M., Küçükçetin, A. (2018). Süt Endüstrisinde Kullanılan Isı Değiştiricilerde Kalıntı Oluşumu. Akademik Gıda, 16(4), 450-457. https://doi.org/10.24323/akademik-gida.505536
AMA Kızılay HK, Ergin F, Demir M, Küçükçetin A. Süt Endüstrisinde Kullanılan Isı Değiştiricilerde Kalıntı Oluşumu. Akademik Gıda. December 2018;16(4):450-457. doi:10.24323/akademik-gida.505536
Chicago Kızılay, Hatice Kübra, Firuze Ergin, Muammer Demir, and Ahmet Küçükçetin. “Süt Endüstrisinde Kullanılan Isı Değiştiricilerde Kalıntı Oluşumu”. Akademik Gıda 16, no. 4 (December 2018): 450-57. https://doi.org/10.24323/akademik-gida.505536.
EndNote Kızılay HK, Ergin F, Demir M, Küçükçetin A (December 1, 2018) Süt Endüstrisinde Kullanılan Isı Değiştiricilerde Kalıntı Oluşumu. Akademik Gıda 16 4 450–457.
IEEE H. K. Kızılay, F. Ergin, M. Demir, and A. Küçükçetin, “Süt Endüstrisinde Kullanılan Isı Değiştiricilerde Kalıntı Oluşumu”, Akademik Gıda, vol. 16, no. 4, pp. 450–457, 2018, doi: 10.24323/akademik-gida.505536.
ISNAD Kızılay, Hatice Kübra et al. “Süt Endüstrisinde Kullanılan Isı Değiştiricilerde Kalıntı Oluşumu”. Akademik Gıda 16/4 (December 2018), 450-457. https://doi.org/10.24323/akademik-gida.505536.
JAMA Kızılay HK, Ergin F, Demir M, Küçükçetin A. Süt Endüstrisinde Kullanılan Isı Değiştiricilerde Kalıntı Oluşumu. Akademik Gıda. 2018;16:450–457.
MLA Kızılay, Hatice Kübra et al. “Süt Endüstrisinde Kullanılan Isı Değiştiricilerde Kalıntı Oluşumu”. Akademik Gıda, vol. 16, no. 4, 2018, pp. 450-7, doi:10.24323/akademik-gida.505536.
Vancouver Kızılay HK, Ergin F, Demir M, Küçükçetin A. Süt Endüstrisinde Kullanılan Isı Değiştiricilerde Kalıntı Oluşumu. Akademik Gıda. 2018;16(4):450-7.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).