Research Article
BibTex RIS Cite

INVESTIGATING THE PHYSICOCHEMICAL PROPERTIES AND IN VITRO BIOACCESSIBILITY OF PHENOLICS AND ANTIOXIDANT CAPACITY OF ROOIBOS HERBAL TEA BEVERAGE

Year 2017, Volume: 42 Issue: 6, 682 - 692, 15.12.2017

Abstract




















In this
research, production of novel beverages from the infusion of dried rooibos
leaves was planned and evaluation of physicochemical properties, total
phenolics, antioxidant capacity, and the bioaccessibility of the products were
aimed. For this purpose, 1% extract of rooibos (RE), citric and ascorbic acids,
natural lemon flavor were added all types of beverages.
Additionally, sucrose, natural sweetener agave and aspartame and acesulfame–K
were respectively added to the beverages coded as RS, RA and RSW.

Mixtures were plate filtered, filled
into 200 mL glass bottles and pasteurized at 98
°C for 15 min. Total phenolic content and antioxidant capacity with FRAP,
CUPRAC and DPPH assays were determined both in beverages and the rooibos extract.
An in vitro model simulating
gastrointestinal (GI) digestion system was also adapted to assess the
bioaccessibility of phenolics and antioxidant capacities. Total phenolics were
determined more bioaccessible in RS (405.02±4.57 mg GAE/100 mL) while
the highest bioaccessibilities of antioxidant capacity was
obtained from RA with CUPRAC (7.19%) and FRAP (1.82%) resulting with the
highest functionality.

References

  • 1. Altuğ, T., Elmacı, Y. (2011). Gıdalarda Duyusal Değerlendirme. 2. Baskı. Sidas Medya, İzmir, Türkiye, 134 s. ISBN:978-9944-5660-8-7.
  • 2. Anonymous (2014). https://www.tse.org.tr, siyah çay, bitkisel çaylar, kahve, baharatlar, çeşni maddeleri ve gıda katkıları.
  • 3. Apak, R., Güçlü, K., Özyürek, M., Çelik, S. E. (2008). Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim Acta, 160: 413–419.
  • 4. Benzie, I. F. F., Strain, J. J. (1996). The Ferric Reducing Ability of Plasma ( FRAP ) as a Measure of “ Antioxidant Power ”: The FRAP Assay, Anal Biochem, 239: 70–76.
  • 5. Boo, H.O., Hwang, S. J., Bae, C. S., Park, S. H., Heo, B.G., Gorinstein, S. (2012). Extraction and characterization of some natural plant pigments. Ind Crops Prod, 40: 129–135.
  • 6. Bouayed, J., Hoffmann, L., Bohn, T. (2011). Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem, 128: 14–21.
  • 7. Cemeroğlu, B. S. (2007). Gıda Analizleri. Gıda Teknolojisi Derneği Yayınları, No. 34. Bizim Büro Basımevi, Ankara, Türkiye, 535 s. ISBN: 9759857868.
  • 8. Costa, P., Grevenstuk, T., Rosa da Costa, A. M., Gonçalves, S., Romano, A. (2014). Antioxidant and anti-cholinesterase activities of Lavandula viridis L’Hér extracts after in vitro gastrointestinal digestion. Ind Crops Prod, 55: 83–89.
  • 9. Değirmencioğlu, N., Gürbüz, O., Şahan, Y. (2016). The monitoring, via an in vitro digestion system, of the bioactive content of vegetable juice fermented with Saccharomyces cerevisiae and Saccharomyces boulardii. J Food Process Proserv 40: 798-811.
  • 10. Glahn, R.P., Lee, O.A., Yeung, A., Goldman, M.I., Miller, D.D. (1998). Caco-2 cell ferritin formation predicts nonradiolabeled food iron availability in an in vitro digestion/Caco-2 cell culture model. J Nutr, 128, 1555-1561.
  • 11. Henning, S. M., Zhang, Y., Rontoyanni, V. G., Huang, J., Lee, R., Trang, A., Nuernberger, G., Heber, D. (2014) Variability in the Antioxidant Activity of Dietary Supplements from Pomegranate, Milk Thistle, Green Tea, Grape Seed, Goji, and Acai: Effects of in vitro Digestion. J Agric Food Chem, 62: 4313-4321.
  • 12. İncedayı, B. (2017). Gazlı ıhlamur çayı içeceğinin bazı özelliklerinin araştırılması. GIDA 42 (4): 355-363, doi: 10.15237/gida.GD17025.
  • 13. Jenner, A. M., Rafter, J., Halliwell, B. (2005). Human fecal water content of phenolics: The extent of colonic exposure to aromatic compounds, Free Radical Biology & Medicine, 38: 763-772.
  • 14. Jeszka-Skowron, M., Krawczyk, M., Zgoła-Grześkowiak, A. (2015). Determination of antioxidant activity, rutin, quercetin, phenolic acids and trace elements in tea infusions: Influence of citric acid addition on extraction of metals. J Food Compos Analys, 40: 70–77.
  • 15. Joubert, E., de Beer, D. (2012). Phenolic content and antioxidant activity of rooibos food ingredient extracts, J Food Compos Analys, 27: 45-51.
  • 16. Joubert, E., de Beer, D. (2011). Rooibos (Aspalathus linearis) beyond the farm gate: From herbal tea to potential phytopharmaceutical. S Afr J Bot, 77: 869-886.
  • 17. Joubert, E., Gelderblom, W. C .A., Louw, A., de Beer, D. (2008). South African herbal teas: Aspalathus linearis, Cyclopia spp. and Athrixia phylicoides: A review, J Ethnopharmacol, 119: 376–412.
  • 18. Katalinic, V., Milos, M., Kulisic, T., Jukic, M. (2006). Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem, 94(4): 550–557.
  • 19. Kitchens, M., Owens, B.M. (2007). Effect of carbonated beverages, coffee, sports and high energy drinks, and bottled water on the in vitro erosion characteristics of dental enamel. J ClinPediatr Dent, 31, 153-159.
  • 20. Lešková, E., Kubíková, J., Kováčiková, E., Košická, M., Porubská, J., Holčíková, K. (2006). Vitamin losses: Retention during heat treatment and continual changes expressed by mathematical models. J Food Compos Anal, 19: 252–276.
  • 21. Magcwebeba T. U., Riedel, S., Swanevelder, S., Swart, P., De Beer D., Joubert, E., Gelderblom. W. C. A. (2016). The potential role of polyphenols in the modulation of skin cell viability by Aspalathus linearis and Cyclopia spp. Herbal tea extracts in vitro. J Pham Pharmacol, 68: 1440-1453.
  • 22. Marnewick J. L., van der Westhuizen, F. H., Joubert, E., Swanevelder, S., Swart, P., Gelderblom. W. C. A. (2009). Chemoprotective properties of rooibos (Aspalathus linearis), honeybush (Cyclopia intermedia) herbal and green and black (Camellia sinensis) teas against cancer promotion induced by fumonisin B1 in rat liver. Food Chem Toxicol, 47: 220-229.
  • 23. Muller, C. J. F., Malherbe, C. J., Chellan, N., Yagasaki, K., Miura, Y., Joubert, E. (2016). Potential of Rooibos, its Major C-Glucosyl Flavonoids and Z-2-(ß-D-Glucopyranoloxy)-3-phenylpropenoic acid in Prevention of Metabolic Syndrome. Critic Rev Food Sci Nutr, doi: 10.1080/10408398.2016.1157568.
  • 24. Oh, J., Jo, H., Cho, A. R., Kim, S. J., Han, J. (2013). Antioxidant and antimicrobial activities of various leafy herbal teas. Food Control, 31(2): 403-409.
  • 25. Ortega N.. Reguant, J., Romero, M. P., Macia, A., Motilva, M. J. (2009). Effect of fat content on the digestibility and bioaccessibility of cocoa polyphenol by an in vitro digestion model, J. Agric Food Chem, 57: 5743–5749.
  • 26. Palafox-Carlos, H., Ayala-Zavala, J. F., Gonz´alez-Aguilar, G. A. (2011). The Role of Dietary Fiber in the Bioaccessibility and Bioavailability of Fruit and Vegetable Antioxidants. J Food Sci, 76(1): 6-15.
  • 27. Parada, J., Aguilera, J. M. (2007). Food microstructure affects the bioavailability of several nutrients. J Food Sci, 72: 21–32.
  • 28. Phelan, J., Rees, J. (2003). The erosive potential of some herbal teas. Journal of Dentistry, 31: 241–246.
  • 29. Pellegrini, N., Serafini, M., Colombi, B., Del Rio, D., Salavatore, S., Bianchi, M., Brighenti, F., (2003). Total Antioxidant Capacity of Plant Foods, Beverages and Oils Consumed in Italy Assessed by Three Different in vitro Assays1. J Nutr, 133: 2812-2819.
  • 30. Riachi, L.G., De Maria, C.A.B. (2015). Peppermint antioxidants revisited. Food Chem, 176, 72-81.
  • 31. Rodríguez-Roque, M. J., Rojas-Graü, M. A., Elez-Martínez, P., Martín-Belloso, O. (2013). Soymilk phenolic compounds, isoflavones and antioxidant activity as affected by in vitro gastrointestinal digestion. Food Chem, 136: 206–212.
  • 32. Santos, J. S., Deolindo, C. T. P., Esmerino, L. A., Genovese, M. A., Fujita, A., Marques, M. B., Rosso, N. D., Daguer, H., Valese, A. C., Granato, D. (2016). Effects of time and extraction temperature on phenolic composition and functional properties of red rooibos (Aspalathus linearis) Food Res Int, 89: 476-487.
  • 33. Sengul, H., Sürek, E., Nilufer-Erdil, D. (2014). Investigating the effects of food matrix and food components on bioaccessibility of pomegranate (Punica granatum) phenolics and anthocyanins using an in-vitro gastrointestinal digestion model, Food Res Int, 62: 1069-1079.
  • 34. Sissing L, Marnewick J, de Kock M, Swanevelder S, Joubert E, Gelderblom W. (2011). Modulating effects of rooibos and honeybush herbal teas on the development of esophageal papillomas in rats, Nutr Cancer, 63(4): 600-10. doi: 10.1080/01635581.2011.539313.
  • 35. Spanos, G. A., Wrolstad, R. E. (1990). Influence of processing and storage on the phenolic composition of Thompson Seedless grape juice. J Agric Food Chem, 38: 1565–1571.
  • 36. Velioglu, Y. S., Mazza, G., Gao, L., Oomah, B. D. (1998). Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products. J Agric Food Chem, 46: 4113–4117.
  • 37. Vitali, D., Dragojević, I. V., Šebečić, B. (2009). Effects of incorporation of integral raw materials and dietary fibre on the selected nutritional and functional properties of biscuits. Food Chem, 114(4): 1462–1469.
  • 38. Walters, N. A., de Villiers, A., Joubert, E., de Beer, D. (2017). Improved HPLC method for rooibos phenolics targeting changes due to fermentation, J Food Compos Anal, 55: 20-29.

ROOİBOS ÇAYI İÇECEĞİNİN FİZİKOKİMYASAL ÖZELLİKLERİ İLE FENOLİK MADDE VE ANTİOKSİDAN KAPASİTE YÖNÜNDEN BİYOALINABİLİRLİĞİNİN ARAŞTIRILMASI

Year 2017, Volume: 42 Issue: 6, 682 - 692, 15.12.2017

Abstract




















Bu çalışmada kurutulmuş rooibos yapraklarının
infüzyonu ile hazırlanan ekstrakttan yeni içecek çeşitlerinin üretilmesi
planlanmış ve elde edilen ürünlerin fizikokimyasal bileşimlerinin yanı sıra, toplam
fenolik madde miktarı ve antioksidan kapasiteleri ile fenolik madde ve antioksidanların
biyoalınabilirliğinin ortaya konulması hedeflenmiştir. Bu amaçla içerisinde %1
rooibos ekstraktı (RE) bulunan içeceklerin her birine, sitrik asit, askorbik
asit ve doğal limon aroması eklenmiştir. Ayrıca içecek çeşidine özgü olarak RS
kodlu içeceğe şeker, RA kodlu içeceğe doğal tatlandırıcı olarak agave şurubu,
RSW kodlu içeceğe ise aspartam ve asesülfam-K ilavesi yapılmıştır. Karışımlar
plakalı filtreden geçirilerek, 200 mL’lik cam şişelere doldurulmuş, taç kapakla
kapatılmış ve ardından
98°C’de 15 dk pastörize
edilmiştir. İçecek çeşitleri ve rooibos ekstraktında toplam fenolik madde
analizi yapılmış, antioksidan kapasiteleri ise FRAP, CUPRAC ve DPPH yöntemleri
ile tayin edilmiştir. Bununla birlikte, toplam fenollerin ve antioksidan
kapasitenin biyoalınabilirliklerinin belirlenmesi için in vitro sindirim modeli uygulanmıştır. Toplam fenollerin
biyoalınabilirliği RS içeceğinde en yüksek olarak saptanırken, antioksidan özellik
gösteren bileşenlerin biyoalınabilirliği
%7.19 (CUPRAC)
ve %1.82 (FRAP) oranları ile en yüksek olarak RA örneğinden elde edilmiştir.

References

  • 1. Altuğ, T., Elmacı, Y. (2011). Gıdalarda Duyusal Değerlendirme. 2. Baskı. Sidas Medya, İzmir, Türkiye, 134 s. ISBN:978-9944-5660-8-7.
  • 2. Anonymous (2014). https://www.tse.org.tr, siyah çay, bitkisel çaylar, kahve, baharatlar, çeşni maddeleri ve gıda katkıları.
  • 3. Apak, R., Güçlü, K., Özyürek, M., Çelik, S. E. (2008). Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim Acta, 160: 413–419.
  • 4. Benzie, I. F. F., Strain, J. J. (1996). The Ferric Reducing Ability of Plasma ( FRAP ) as a Measure of “ Antioxidant Power ”: The FRAP Assay, Anal Biochem, 239: 70–76.
  • 5. Boo, H.O., Hwang, S. J., Bae, C. S., Park, S. H., Heo, B.G., Gorinstein, S. (2012). Extraction and characterization of some natural plant pigments. Ind Crops Prod, 40: 129–135.
  • 6. Bouayed, J., Hoffmann, L., Bohn, T. (2011). Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem, 128: 14–21.
  • 7. Cemeroğlu, B. S. (2007). Gıda Analizleri. Gıda Teknolojisi Derneği Yayınları, No. 34. Bizim Büro Basımevi, Ankara, Türkiye, 535 s. ISBN: 9759857868.
  • 8. Costa, P., Grevenstuk, T., Rosa da Costa, A. M., Gonçalves, S., Romano, A. (2014). Antioxidant and anti-cholinesterase activities of Lavandula viridis L’Hér extracts after in vitro gastrointestinal digestion. Ind Crops Prod, 55: 83–89.
  • 9. Değirmencioğlu, N., Gürbüz, O., Şahan, Y. (2016). The monitoring, via an in vitro digestion system, of the bioactive content of vegetable juice fermented with Saccharomyces cerevisiae and Saccharomyces boulardii. J Food Process Proserv 40: 798-811.
  • 10. Glahn, R.P., Lee, O.A., Yeung, A., Goldman, M.I., Miller, D.D. (1998). Caco-2 cell ferritin formation predicts nonradiolabeled food iron availability in an in vitro digestion/Caco-2 cell culture model. J Nutr, 128, 1555-1561.
  • 11. Henning, S. M., Zhang, Y., Rontoyanni, V. G., Huang, J., Lee, R., Trang, A., Nuernberger, G., Heber, D. (2014) Variability in the Antioxidant Activity of Dietary Supplements from Pomegranate, Milk Thistle, Green Tea, Grape Seed, Goji, and Acai: Effects of in vitro Digestion. J Agric Food Chem, 62: 4313-4321.
  • 12. İncedayı, B. (2017). Gazlı ıhlamur çayı içeceğinin bazı özelliklerinin araştırılması. GIDA 42 (4): 355-363, doi: 10.15237/gida.GD17025.
  • 13. Jenner, A. M., Rafter, J., Halliwell, B. (2005). Human fecal water content of phenolics: The extent of colonic exposure to aromatic compounds, Free Radical Biology & Medicine, 38: 763-772.
  • 14. Jeszka-Skowron, M., Krawczyk, M., Zgoła-Grześkowiak, A. (2015). Determination of antioxidant activity, rutin, quercetin, phenolic acids and trace elements in tea infusions: Influence of citric acid addition on extraction of metals. J Food Compos Analys, 40: 70–77.
  • 15. Joubert, E., de Beer, D. (2012). Phenolic content and antioxidant activity of rooibos food ingredient extracts, J Food Compos Analys, 27: 45-51.
  • 16. Joubert, E., de Beer, D. (2011). Rooibos (Aspalathus linearis) beyond the farm gate: From herbal tea to potential phytopharmaceutical. S Afr J Bot, 77: 869-886.
  • 17. Joubert, E., Gelderblom, W. C .A., Louw, A., de Beer, D. (2008). South African herbal teas: Aspalathus linearis, Cyclopia spp. and Athrixia phylicoides: A review, J Ethnopharmacol, 119: 376–412.
  • 18. Katalinic, V., Milos, M., Kulisic, T., Jukic, M. (2006). Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem, 94(4): 550–557.
  • 19. Kitchens, M., Owens, B.M. (2007). Effect of carbonated beverages, coffee, sports and high energy drinks, and bottled water on the in vitro erosion characteristics of dental enamel. J ClinPediatr Dent, 31, 153-159.
  • 20. Lešková, E., Kubíková, J., Kováčiková, E., Košická, M., Porubská, J., Holčíková, K. (2006). Vitamin losses: Retention during heat treatment and continual changes expressed by mathematical models. J Food Compos Anal, 19: 252–276.
  • 21. Magcwebeba T. U., Riedel, S., Swanevelder, S., Swart, P., De Beer D., Joubert, E., Gelderblom. W. C. A. (2016). The potential role of polyphenols in the modulation of skin cell viability by Aspalathus linearis and Cyclopia spp. Herbal tea extracts in vitro. J Pham Pharmacol, 68: 1440-1453.
  • 22. Marnewick J. L., van der Westhuizen, F. H., Joubert, E., Swanevelder, S., Swart, P., Gelderblom. W. C. A. (2009). Chemoprotective properties of rooibos (Aspalathus linearis), honeybush (Cyclopia intermedia) herbal and green and black (Camellia sinensis) teas against cancer promotion induced by fumonisin B1 in rat liver. Food Chem Toxicol, 47: 220-229.
  • 23. Muller, C. J. F., Malherbe, C. J., Chellan, N., Yagasaki, K., Miura, Y., Joubert, E. (2016). Potential of Rooibos, its Major C-Glucosyl Flavonoids and Z-2-(ß-D-Glucopyranoloxy)-3-phenylpropenoic acid in Prevention of Metabolic Syndrome. Critic Rev Food Sci Nutr, doi: 10.1080/10408398.2016.1157568.
  • 24. Oh, J., Jo, H., Cho, A. R., Kim, S. J., Han, J. (2013). Antioxidant and antimicrobial activities of various leafy herbal teas. Food Control, 31(2): 403-409.
  • 25. Ortega N.. Reguant, J., Romero, M. P., Macia, A., Motilva, M. J. (2009). Effect of fat content on the digestibility and bioaccessibility of cocoa polyphenol by an in vitro digestion model, J. Agric Food Chem, 57: 5743–5749.
  • 26. Palafox-Carlos, H., Ayala-Zavala, J. F., Gonz´alez-Aguilar, G. A. (2011). The Role of Dietary Fiber in the Bioaccessibility and Bioavailability of Fruit and Vegetable Antioxidants. J Food Sci, 76(1): 6-15.
  • 27. Parada, J., Aguilera, J. M. (2007). Food microstructure affects the bioavailability of several nutrients. J Food Sci, 72: 21–32.
  • 28. Phelan, J., Rees, J. (2003). The erosive potential of some herbal teas. Journal of Dentistry, 31: 241–246.
  • 29. Pellegrini, N., Serafini, M., Colombi, B., Del Rio, D., Salavatore, S., Bianchi, M., Brighenti, F., (2003). Total Antioxidant Capacity of Plant Foods, Beverages and Oils Consumed in Italy Assessed by Three Different in vitro Assays1. J Nutr, 133: 2812-2819.
  • 30. Riachi, L.G., De Maria, C.A.B. (2015). Peppermint antioxidants revisited. Food Chem, 176, 72-81.
  • 31. Rodríguez-Roque, M. J., Rojas-Graü, M. A., Elez-Martínez, P., Martín-Belloso, O. (2013). Soymilk phenolic compounds, isoflavones and antioxidant activity as affected by in vitro gastrointestinal digestion. Food Chem, 136: 206–212.
  • 32. Santos, J. S., Deolindo, C. T. P., Esmerino, L. A., Genovese, M. A., Fujita, A., Marques, M. B., Rosso, N. D., Daguer, H., Valese, A. C., Granato, D. (2016). Effects of time and extraction temperature on phenolic composition and functional properties of red rooibos (Aspalathus linearis) Food Res Int, 89: 476-487.
  • 33. Sengul, H., Sürek, E., Nilufer-Erdil, D. (2014). Investigating the effects of food matrix and food components on bioaccessibility of pomegranate (Punica granatum) phenolics and anthocyanins using an in-vitro gastrointestinal digestion model, Food Res Int, 62: 1069-1079.
  • 34. Sissing L, Marnewick J, de Kock M, Swanevelder S, Joubert E, Gelderblom W. (2011). Modulating effects of rooibos and honeybush herbal teas on the development of esophageal papillomas in rats, Nutr Cancer, 63(4): 600-10. doi: 10.1080/01635581.2011.539313.
  • 35. Spanos, G. A., Wrolstad, R. E. (1990). Influence of processing and storage on the phenolic composition of Thompson Seedless grape juice. J Agric Food Chem, 38: 1565–1571.
  • 36. Velioglu, Y. S., Mazza, G., Gao, L., Oomah, B. D. (1998). Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products. J Agric Food Chem, 46: 4113–4117.
  • 37. Vitali, D., Dragojević, I. V., Šebečić, B. (2009). Effects of incorporation of integral raw materials and dietary fibre on the selected nutritional and functional properties of biscuits. Food Chem, 114(4): 1462–1469.
  • 38. Walters, N. A., de Villiers, A., Joubert, E., de Beer, D. (2017). Improved HPLC method for rooibos phenolics targeting changes due to fermentation, J Food Compos Anal, 55: 20-29.
There are 38 citations in total.

Details

Other ID GD17050
Journal Section Articles
Authors

Senem Suna

Publication Date December 15, 2017
Published in Issue Year 2017 Volume: 42 Issue: 6

Cite

APA Suna, S. (2017). ROOİBOS ÇAYI İÇECEĞİNİN FİZİKOKİMYASAL ÖZELLİKLERİ İLE FENOLİK MADDE VE ANTİOKSİDAN KAPASİTE YÖNÜNDEN BİYOALINABİLİRLİĞİNİN ARAŞTIRILMASI. Gıda, 42(6), 682-692.
AMA Suna S. ROOİBOS ÇAYI İÇECEĞİNİN FİZİKOKİMYASAL ÖZELLİKLERİ İLE FENOLİK MADDE VE ANTİOKSİDAN KAPASİTE YÖNÜNDEN BİYOALINABİLİRLİĞİNİN ARAŞTIRILMASI. The Journal of Food. December 2017;42(6):682-692.
Chicago Suna, Senem. “ROOİBOS ÇAYI İÇECEĞİNİN FİZİKOKİMYASAL ÖZELLİKLERİ İLE FENOLİK MADDE VE ANTİOKSİDAN KAPASİTE YÖNÜNDEN BİYOALINABİLİRLİĞİNİN ARAŞTIRILMASI”. Gıda 42, no. 6 (December 2017): 682-92.
EndNote Suna S (December 1, 2017) ROOİBOS ÇAYI İÇECEĞİNİN FİZİKOKİMYASAL ÖZELLİKLERİ İLE FENOLİK MADDE VE ANTİOKSİDAN KAPASİTE YÖNÜNDEN BİYOALINABİLİRLİĞİNİN ARAŞTIRILMASI. Gıda 42 6 682–692.
IEEE S. Suna, “ROOİBOS ÇAYI İÇECEĞİNİN FİZİKOKİMYASAL ÖZELLİKLERİ İLE FENOLİK MADDE VE ANTİOKSİDAN KAPASİTE YÖNÜNDEN BİYOALINABİLİRLİĞİNİN ARAŞTIRILMASI”, The Journal of Food, vol. 42, no. 6, pp. 682–692, 2017.
ISNAD Suna, Senem. “ROOİBOS ÇAYI İÇECEĞİNİN FİZİKOKİMYASAL ÖZELLİKLERİ İLE FENOLİK MADDE VE ANTİOKSİDAN KAPASİTE YÖNÜNDEN BİYOALINABİLİRLİĞİNİN ARAŞTIRILMASI”. Gıda 42/6 (December 2017), 682-692.
JAMA Suna S. ROOİBOS ÇAYI İÇECEĞİNİN FİZİKOKİMYASAL ÖZELLİKLERİ İLE FENOLİK MADDE VE ANTİOKSİDAN KAPASİTE YÖNÜNDEN BİYOALINABİLİRLİĞİNİN ARAŞTIRILMASI. The Journal of Food. 2017;42:682–692.
MLA Suna, Senem. “ROOİBOS ÇAYI İÇECEĞİNİN FİZİKOKİMYASAL ÖZELLİKLERİ İLE FENOLİK MADDE VE ANTİOKSİDAN KAPASİTE YÖNÜNDEN BİYOALINABİLİRLİĞİNİN ARAŞTIRILMASI”. Gıda, vol. 42, no. 6, 2017, pp. 682-9.
Vancouver Suna S. ROOİBOS ÇAYI İÇECEĞİNİN FİZİKOKİMYASAL ÖZELLİKLERİ İLE FENOLİK MADDE VE ANTİOKSİDAN KAPASİTE YÖNÜNDEN BİYOALINABİLİRLİĞİNİN ARAŞTIRILMASI. The Journal of Food. 2017;42(6):682-9.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/