Research Article
BibTex RIS Cite

ÇİMLENDİRİLMİŞ BAZI TAHIL VE BAKLAGİLLERİN FİZİKSEL VE KİMYASAL ÖZELLİKLERİ

Year 2019, Volume: 44 Issue: 3, 419 - 429, 15.05.2019
https://doi.org/10.15237/gida.GD19019

Abstract

Bu çalışmada buğday, arpa, yulaf, kinoa, amarant, yeşil
mercimek, nohut ve maş fasulyesi taneleri hedef alınmış olup, bu tanelerin
farklı sürelerde (1, 3 ve 5 gün) çimlendirilmesi ve çimlendirme sonucunda
değişimleri incelenmiştir. Çimlendirme süresi arttıkça, tanelerin
L*, a* ve
b*
değerlerinin azaldığı tespit edilmiştir. Çimlendirme ile tanelerin; kül,
ham protein ve yağ miktarları artmıştır. Ham tanelere kıyasla çimlendirilmiş
örneklerin, daha yüksek fenolik madde içerdiği ve çimlendirme süresinin
artmasına bağlı olarak fitik asit miktarının azaldığı tespit edilmiştir.
Ayrıca; baklagillerin ham protein oranının yaygın tahıllara kıyasla daha
yüksek, bu tahılların da ham yağ oranının baklagillere kıyasla daha düşük
olduğu ve en yüksek toplam fenolik madde içeriğine pseudo-tahılların sahip
olduğu bunu da baklagillerin takip ettiği gözlenmiştir. Sonuç olarak tahıl,
pseudo-tahıl ve baklagil tanelerinin çimlendirilmesi ile mevcut kimyasal
özelliklerinin geliştirilebileceği ve fonksiyonelliğinin arttırılabileceği,
başta tahıl ve tahıl ürünlerinde olmak üzere birçok gıda üretiminde
kullanılabileceği kanaatine varılmıştır.

References

  • AACC (1990). American Association of Cereal Chemists, Approved Methods of the AACC. 8th Edition, Saint Paul, Minnesota, USA.
  • Alvarez-Jubete, L., Wijngaard, H., Arendt, E.K., Gallagher, E. (2010). Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem, 119(2): 770–778.
  • Arslan, M. (2010). Çeşitli şiddetteki gök gürültüsü seslerinin tohum çimlenmesi üzerine etkileri. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı Yüksek Lisans Tezi, Kütahya, 42 s.
  • Ashton, W.M., Williams, P.C. (1958). The phosphorus compounds of oats the content of phytate phosphorus. J Sci Food Agric, 9(8): 505-511.
  • Bibi, N., Aurang, Z., Amal, B.K., Mohammad, S.K. (2008). Effect of germination time and type of illumination on proximate composition of chickpea seed (Cicer arietinum L.). Am J Food Technol, 3(1): 24-32.
  • Chauhan, A., Saxena, D.C., Singh, S. (2015). Total dietary fibre and antioxidant activity of gluten free cookies made from raw and germinated amaranth (Amaranthus spp.) flour. Lwt-Food Sci Technol, 63(2): 939-945.
  • Dilber, A., Türker, S., Elgün, A. (2003) Çimlendirilmiş bir buğday ürünü olan azık üzerine araştırmalar. Gıda, 28(4): 409-414.
  • Donkor, O.N., Stojanovska, L., Ginn, P., Ashton, J., Vasiljevic, T. (2012). Germinated grains- sources of bioactive compounds. Food Chem, 135(3): 950-959.
  • Duranti, M., Gius, C. (1997). Legume seeds: protein content and nutritional value. Field Crops Res, 53(1-3): 31-45.
  • Düzgüneş, O., Kesici, T., Kavuncu, O., Gürbüz, F. (1987). Araştırma ve Deneme Metodları. Ankara Üniversitesi Ziraat Fakültesi Yayınları, Yayın No: 1021, Ankara, 381 s.
  • Dziki, D., Gawlik-Dziki, U., Kordowska-Wiater, M., DomaN-Pytka, M. (2015). Influence of elicitation and germination conditions on biological activity of wheat sprouts. J Chem, vol-2015: 1-8.
  • El-Adawy, T.A., Rahma, E.H., El-Bedawey, A.A., El-Beltagy, A.E. (2003). Nutritional potential and functional properties of germinated mung bean, pea and lentil seeds. Plant Foods Hum Nutr, 58(3): 1-13.
  • Ertaş, N. (2007). Yemeklik baklagiller ve antibesinsel faktörler. Selçuk Tarım Bil Der, 21(41): 85-95.
  • Evenari, M. (1984). Seed physilogy: from ovule to maturing seed. Bot Rev, 50(2): 143-170.
  • Farooqui, A.S., Syed, H.M., Talpade, N.N., Sontakke, M.D., Ghatge, P.U. (2018). Influence of germination on chemical and nutritional properties of barley flour. J Pharmacogn Phytochem, 7(2): 3855-3858.
  • Finney, P.L. (1983). Effect of germination on cereal and legume nutrients changes and food or feed value: comprehesive review. Rec Adv Phytochem, 17: 229-308.
  • Fouad, A.A., Ali Rehab, F.M. (2015). Effect of germination time on proximate analysis, bioactive compounds and antioxidant activity of lentil (lens culinaris medik.) sprouts. Acta Sci Pol Technol, 14(3): 233-246.
  • Fratianni, F., Cardinale, F., Cozzolino, A., Granese, T., Albanese, D., Matteo, M., Zaccardelli, M., Coppola, R., Nazzaro, F. (2014). Polyphenol composition and antioxidant activity of different grass pea (Lathyrus sativus), lentils (Lens culinaris), and chickpea (Cicer arietinum) ecotypes of the Campania region (Southern Italy). J Funct Food, 7: 551-557.
  • Gamez-Meza, N., Noriega-Rodriguez, J.A., Medina-Juarez, L.A., Ortega Garcia, J., Cazarez-Casanova, R., Angulo-Guerrero, O. (1999). Antioxidant activity in soybean oil of extracts from thompson grape bagasse. J Am Oil Chem Soc, 76: 1445-1447.
  • Garciarubio, A., Legaria, J.P., Covarrubies, A.A. (1997). Abscisic acid inhibit germination of mature arabidopsis seeds by limiting the availabity of energy and nutrients. Planta, 203(2): 182-187.
  • Ghavidel, R.A., Prakash, J. (2007). The impact of germination and dehulling on nutrients, antinutrients, in vitro iron and calcium bioavailability and in vitro starch and protein digestibility of some legume seeds. Lwt-Food Sci Technol, 40(7): 1292-1299.
  • Harmuth-Hoene, A.E., Bognar, A.E., Kornemann, U., Diehl, J.F. (1987) The influence of germination on the nutritional value of wheat, mung beans and chickpeas. Z Lebensm Unters Forsch, 185(5): 386-393.
  • Haug, W., Lantzsch, H.J. (1983). Sensitive method for the rapid determination of phytate in cereals and cereal product. J Sci Food Agric, 34(12): 1423-1426.
  • Jones, R.L., Jacobsen, J.V. (1991). Regulation and syhntesis and transport of secreted proteins of in cereal aleurone. Int Rev Cytol, 126: 49-88.
  • Kanmaz, E.Ö., Ova, G. (2014). Filizlenme işleminin fitokimyasal bileşikler üzerine etkisi. Gıda, 39(1): 49-56.
  • Kanmaz, E.Ö. (2017). Fonksiyonel Antioksidan Gıdalar: Yenilebilir tohum filizleri. Sidas Medya, İzmir, 256 sayfa.
  • Karaşahin, M. (2015). Topraksız ortamda yetiştirilen bazı tahılların çim suyu verim ve besin değerleri. Iğdır Univ J Inst Sci Tech, 5(4): 57-64.
  • Kavas, A., El, S.N. (1991). Nutritive value of germinated mung beans and lentils. J Consumer Stud Home Econ, 15(4): 357-366.
  • Kim, D.K., Jeong, S.C., Gorinstein, S., Chon, S.U. (2012). Total polyphenols, antioxidant and antiproliferative activities of different extracts in mungbean seeds and sprouts. Plant Foods Hum Nutr, 67(1): 71-75.
  • Mahmoud, A.H., El-Anany, A.M. (2014). Nutritional and sensory evaluation of a complementary food formulated from rice, faba beans, sweet potato fl our, and peanut oil. Food Nutr Bull, 35 (4), 403-413.
  • Martinez-Villaluenga, C., Frias, J., Gulewicz, P., Gulewisz, K., Vidal-Valverde, C. (2008). Food safety evaluation of broccoli and radish sprouts, Food Chem Toxicol, 46(5): 1635-1644.
  • Márton, M., Mándoki, Z., Csapo-Kiss, Z.S., Csapo, J. (2010). The role of sprouts in human nutrition, A review. Acta Univ Sapientiae, 3, 81-117.
  • Narsih, Y. (2012). The study of germination and soaking time to improve nutritional quality of sorghum seed, Int Food Res J, 19(4): 1429-1432.
  • Nonogaki, H., Bassel, G.W., Bewley, J.D. (2010). Germination-still a mystery. Plant Sci, 179(6): 574-581.
  • Öztürk, İ. (2008). Çimlendirilmiş buğday tanesinin kimyasal özelliklerinin belirlenmesi ve doğal katkı maddesi olarak değerlendirilme imkanlarının araştırılması. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Yüksek Lisans Tezi, Kayseri, 121 s.
  • Pasko, P., Barton, H., Zagrodzki, P., Gorinstein, S., Folta, M., Zachwieja, Z. (2009). Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem, 115(3): 994-998.
  • Randhir, R., Lin, Y.T., Shetty, K. (2004). Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochem, 39(5): 637-646.
  • Siro´, I., Ka´polna, E., Ka´polna, B., Lugasi, A. (2008). Functional food: product development, marketing and consumer acceptance- A review. Appetite, 51(3): 456-467.
  • Slinkard, K., Singelton, V.L. (1977). Total phenolic analysis, automation and comparison with manual methods. Am Enol Vitic, 28(1): 49-55.
  • Sneath, R. Mclntosh, F. (2003). Review of Hydroponic Fodder Production for Beef Cattle. Queensland Government, Department of Primary Industries, Dalby, Queensland.
  • Tangüler, H., Eleroğlu, H., Özer, E.A., Işıklı, N.D. (2015). Unutulmak üzere olan geleneksel tatlımız: Uğut. TURJAF, 3(7): 604-609.
  • Tian, B., Xie, B., Shi, J., Wu, J., Cai, Y., Xu, T., Xue, S., Deng, Q. (2010). Physicochemical changes of oat seeds during germination. Food Chem, 119(3): 1195-1200.
  • Tok, H. (2017). Tahıl ve baklagil çimlerinin ekmek ve bisküvi üretiminde kullanım olanakları. Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, Konya, 141 s.
  • Uppal, V., Bains, K. (2012). Effect of germination periods and hydrothermal treatments on in vitro protein and starch digestibility of germinated legumes. J Food Sci Technol, 49(2): 184-191.
  • Xu, J.G., Tian, C.R., Hu, Q.P., Luo, J.Y., Wang, X.D., Tian, X.D. (2009). Dynamic changes in phenolic compounds and antioxidant activity in oats (Avena nuda L.) during steeping and germination. J Agric Food Chem, 57(21): 10392-10398.
  • Xu, M.J., Dong, J.F., Zhu, M.Y. (2005). Effect of germination conditions on ascorbic acid level and yield of soybean sprout. J Sci Food Agric, 85(6): 943-947.
  • Yang, F., Basu, T.K., Ooraikul, B. (2001). Studies on germination condition and antioxidant contents of wheat grain. Int J Food Sci Nutr, 52(4): 319-330.
  • Yaqoob, S., Baba, W.N., Masoodi, F.A., Shafi, M., Bazaz, R. (2018). Effect of sprouting on cake quality from wheat-barley flour blends. J Food Meas Charact, 12(2): 1253-1265.
  • Yetim, H., Öztürk, İ., Törnük, F., Sağdıç, O., Hayta, M. (2010). Yenilebilir bitki ve tohum filizlerinin fonksiyonel özellikleri. Gıda, 35(3): 205-210.

PHYSICAL AND CHEMICAL PROPERTIES OF GERMINATED SOME CEREALS AND LEGUMES

Year 2019, Volume: 44 Issue: 3, 419 - 429, 15.05.2019
https://doi.org/10.15237/gida.GD19019

Abstract

In this study, grains of wheat,
barley, oat, quinoa, amaranth, green lentil, chickpea and mung bean were
investigated in terms of their changes after germination at different times (1,
3 and 5 days). As the germination time increased, the
L*, a* and b*
and values of the grains decreased. Germination led to increase in the amount
of ash, crude protein and fat. It was found that along with the increase in
germination time, the germinated samples contained higher phenolic material
compared to the raw grain and decreased the amount of phytic acid. Also, crude
protein in legumes was higher than common grains, that the crude fat content of
common grains was lower than legumes, besides pseudocereals contained the
highest amount of total phenolics which was followed by legumes. As a result,
germination of grains, pseudocereals and legume grains showed that their
present chemical properties and functionality can be improved and they can be
used in the production of many foods, especially in cereal products.

References

  • AACC (1990). American Association of Cereal Chemists, Approved Methods of the AACC. 8th Edition, Saint Paul, Minnesota, USA.
  • Alvarez-Jubete, L., Wijngaard, H., Arendt, E.K., Gallagher, E. (2010). Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem, 119(2): 770–778.
  • Arslan, M. (2010). Çeşitli şiddetteki gök gürültüsü seslerinin tohum çimlenmesi üzerine etkileri. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı Yüksek Lisans Tezi, Kütahya, 42 s.
  • Ashton, W.M., Williams, P.C. (1958). The phosphorus compounds of oats the content of phytate phosphorus. J Sci Food Agric, 9(8): 505-511.
  • Bibi, N., Aurang, Z., Amal, B.K., Mohammad, S.K. (2008). Effect of germination time and type of illumination on proximate composition of chickpea seed (Cicer arietinum L.). Am J Food Technol, 3(1): 24-32.
  • Chauhan, A., Saxena, D.C., Singh, S. (2015). Total dietary fibre and antioxidant activity of gluten free cookies made from raw and germinated amaranth (Amaranthus spp.) flour. Lwt-Food Sci Technol, 63(2): 939-945.
  • Dilber, A., Türker, S., Elgün, A. (2003) Çimlendirilmiş bir buğday ürünü olan azık üzerine araştırmalar. Gıda, 28(4): 409-414.
  • Donkor, O.N., Stojanovska, L., Ginn, P., Ashton, J., Vasiljevic, T. (2012). Germinated grains- sources of bioactive compounds. Food Chem, 135(3): 950-959.
  • Duranti, M., Gius, C. (1997). Legume seeds: protein content and nutritional value. Field Crops Res, 53(1-3): 31-45.
  • Düzgüneş, O., Kesici, T., Kavuncu, O., Gürbüz, F. (1987). Araştırma ve Deneme Metodları. Ankara Üniversitesi Ziraat Fakültesi Yayınları, Yayın No: 1021, Ankara, 381 s.
  • Dziki, D., Gawlik-Dziki, U., Kordowska-Wiater, M., DomaN-Pytka, M. (2015). Influence of elicitation and germination conditions on biological activity of wheat sprouts. J Chem, vol-2015: 1-8.
  • El-Adawy, T.A., Rahma, E.H., El-Bedawey, A.A., El-Beltagy, A.E. (2003). Nutritional potential and functional properties of germinated mung bean, pea and lentil seeds. Plant Foods Hum Nutr, 58(3): 1-13.
  • Ertaş, N. (2007). Yemeklik baklagiller ve antibesinsel faktörler. Selçuk Tarım Bil Der, 21(41): 85-95.
  • Evenari, M. (1984). Seed physilogy: from ovule to maturing seed. Bot Rev, 50(2): 143-170.
  • Farooqui, A.S., Syed, H.M., Talpade, N.N., Sontakke, M.D., Ghatge, P.U. (2018). Influence of germination on chemical and nutritional properties of barley flour. J Pharmacogn Phytochem, 7(2): 3855-3858.
  • Finney, P.L. (1983). Effect of germination on cereal and legume nutrients changes and food or feed value: comprehesive review. Rec Adv Phytochem, 17: 229-308.
  • Fouad, A.A., Ali Rehab, F.M. (2015). Effect of germination time on proximate analysis, bioactive compounds and antioxidant activity of lentil (lens culinaris medik.) sprouts. Acta Sci Pol Technol, 14(3): 233-246.
  • Fratianni, F., Cardinale, F., Cozzolino, A., Granese, T., Albanese, D., Matteo, M., Zaccardelli, M., Coppola, R., Nazzaro, F. (2014). Polyphenol composition and antioxidant activity of different grass pea (Lathyrus sativus), lentils (Lens culinaris), and chickpea (Cicer arietinum) ecotypes of the Campania region (Southern Italy). J Funct Food, 7: 551-557.
  • Gamez-Meza, N., Noriega-Rodriguez, J.A., Medina-Juarez, L.A., Ortega Garcia, J., Cazarez-Casanova, R., Angulo-Guerrero, O. (1999). Antioxidant activity in soybean oil of extracts from thompson grape bagasse. J Am Oil Chem Soc, 76: 1445-1447.
  • Garciarubio, A., Legaria, J.P., Covarrubies, A.A. (1997). Abscisic acid inhibit germination of mature arabidopsis seeds by limiting the availabity of energy and nutrients. Planta, 203(2): 182-187.
  • Ghavidel, R.A., Prakash, J. (2007). The impact of germination and dehulling on nutrients, antinutrients, in vitro iron and calcium bioavailability and in vitro starch and protein digestibility of some legume seeds. Lwt-Food Sci Technol, 40(7): 1292-1299.
  • Harmuth-Hoene, A.E., Bognar, A.E., Kornemann, U., Diehl, J.F. (1987) The influence of germination on the nutritional value of wheat, mung beans and chickpeas. Z Lebensm Unters Forsch, 185(5): 386-393.
  • Haug, W., Lantzsch, H.J. (1983). Sensitive method for the rapid determination of phytate in cereals and cereal product. J Sci Food Agric, 34(12): 1423-1426.
  • Jones, R.L., Jacobsen, J.V. (1991). Regulation and syhntesis and transport of secreted proteins of in cereal aleurone. Int Rev Cytol, 126: 49-88.
  • Kanmaz, E.Ö., Ova, G. (2014). Filizlenme işleminin fitokimyasal bileşikler üzerine etkisi. Gıda, 39(1): 49-56.
  • Kanmaz, E.Ö. (2017). Fonksiyonel Antioksidan Gıdalar: Yenilebilir tohum filizleri. Sidas Medya, İzmir, 256 sayfa.
  • Karaşahin, M. (2015). Topraksız ortamda yetiştirilen bazı tahılların çim suyu verim ve besin değerleri. Iğdır Univ J Inst Sci Tech, 5(4): 57-64.
  • Kavas, A., El, S.N. (1991). Nutritive value of germinated mung beans and lentils. J Consumer Stud Home Econ, 15(4): 357-366.
  • Kim, D.K., Jeong, S.C., Gorinstein, S., Chon, S.U. (2012). Total polyphenols, antioxidant and antiproliferative activities of different extracts in mungbean seeds and sprouts. Plant Foods Hum Nutr, 67(1): 71-75.
  • Mahmoud, A.H., El-Anany, A.M. (2014). Nutritional and sensory evaluation of a complementary food formulated from rice, faba beans, sweet potato fl our, and peanut oil. Food Nutr Bull, 35 (4), 403-413.
  • Martinez-Villaluenga, C., Frias, J., Gulewicz, P., Gulewisz, K., Vidal-Valverde, C. (2008). Food safety evaluation of broccoli and radish sprouts, Food Chem Toxicol, 46(5): 1635-1644.
  • Márton, M., Mándoki, Z., Csapo-Kiss, Z.S., Csapo, J. (2010). The role of sprouts in human nutrition, A review. Acta Univ Sapientiae, 3, 81-117.
  • Narsih, Y. (2012). The study of germination and soaking time to improve nutritional quality of sorghum seed, Int Food Res J, 19(4): 1429-1432.
  • Nonogaki, H., Bassel, G.W., Bewley, J.D. (2010). Germination-still a mystery. Plant Sci, 179(6): 574-581.
  • Öztürk, İ. (2008). Çimlendirilmiş buğday tanesinin kimyasal özelliklerinin belirlenmesi ve doğal katkı maddesi olarak değerlendirilme imkanlarının araştırılması. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Yüksek Lisans Tezi, Kayseri, 121 s.
  • Pasko, P., Barton, H., Zagrodzki, P., Gorinstein, S., Folta, M., Zachwieja, Z. (2009). Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem, 115(3): 994-998.
  • Randhir, R., Lin, Y.T., Shetty, K. (2004). Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochem, 39(5): 637-646.
  • Siro´, I., Ka´polna, E., Ka´polna, B., Lugasi, A. (2008). Functional food: product development, marketing and consumer acceptance- A review. Appetite, 51(3): 456-467.
  • Slinkard, K., Singelton, V.L. (1977). Total phenolic analysis, automation and comparison with manual methods. Am Enol Vitic, 28(1): 49-55.
  • Sneath, R. Mclntosh, F. (2003). Review of Hydroponic Fodder Production for Beef Cattle. Queensland Government, Department of Primary Industries, Dalby, Queensland.
  • Tangüler, H., Eleroğlu, H., Özer, E.A., Işıklı, N.D. (2015). Unutulmak üzere olan geleneksel tatlımız: Uğut. TURJAF, 3(7): 604-609.
  • Tian, B., Xie, B., Shi, J., Wu, J., Cai, Y., Xu, T., Xue, S., Deng, Q. (2010). Physicochemical changes of oat seeds during germination. Food Chem, 119(3): 1195-1200.
  • Tok, H. (2017). Tahıl ve baklagil çimlerinin ekmek ve bisküvi üretiminde kullanım olanakları. Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, Konya, 141 s.
  • Uppal, V., Bains, K. (2012). Effect of germination periods and hydrothermal treatments on in vitro protein and starch digestibility of germinated legumes. J Food Sci Technol, 49(2): 184-191.
  • Xu, J.G., Tian, C.R., Hu, Q.P., Luo, J.Y., Wang, X.D., Tian, X.D. (2009). Dynamic changes in phenolic compounds and antioxidant activity in oats (Avena nuda L.) during steeping and germination. J Agric Food Chem, 57(21): 10392-10398.
  • Xu, M.J., Dong, J.F., Zhu, M.Y. (2005). Effect of germination conditions on ascorbic acid level and yield of soybean sprout. J Sci Food Agric, 85(6): 943-947.
  • Yang, F., Basu, T.K., Ooraikul, B. (2001). Studies on germination condition and antioxidant contents of wheat grain. Int J Food Sci Nutr, 52(4): 319-330.
  • Yaqoob, S., Baba, W.N., Masoodi, F.A., Shafi, M., Bazaz, R. (2018). Effect of sprouting on cake quality from wheat-barley flour blends. J Food Meas Charact, 12(2): 1253-1265.
  • Yetim, H., Öztürk, İ., Törnük, F., Sağdıç, O., Hayta, M. (2010). Yenilebilir bitki ve tohum filizlerinin fonksiyonel özellikleri. Gıda, 35(3): 205-210.
There are 49 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Fatma Nur Kılınçer This is me 0000-0002-8756-2844

Mustafa Kürşat Demir 0000-0002-4706-4170

Publication Date May 15, 2019
Published in Issue Year 2019 Volume: 44 Issue: 3

Cite

APA Kılınçer, F. N., & Demir, M. K. (2019). ÇİMLENDİRİLMİŞ BAZI TAHIL VE BAKLAGİLLERİN FİZİKSEL VE KİMYASAL ÖZELLİKLERİ. Gıda, 44(3), 419-429. https://doi.org/10.15237/gida.GD19019
AMA Kılınçer FN, Demir MK. ÇİMLENDİRİLMİŞ BAZI TAHIL VE BAKLAGİLLERİN FİZİKSEL VE KİMYASAL ÖZELLİKLERİ. The Journal of Food. May 2019;44(3):419-429. doi:10.15237/gida.GD19019
Chicago Kılınçer, Fatma Nur, and Mustafa Kürşat Demir. “ÇİMLENDİRİLMİŞ BAZI TAHIL VE BAKLAGİLLERİN FİZİKSEL VE KİMYASAL ÖZELLİKLERİ”. Gıda 44, no. 3 (May 2019): 419-29. https://doi.org/10.15237/gida.GD19019.
EndNote Kılınçer FN, Demir MK (May 1, 2019) ÇİMLENDİRİLMİŞ BAZI TAHIL VE BAKLAGİLLERİN FİZİKSEL VE KİMYASAL ÖZELLİKLERİ. Gıda 44 3 419–429.
IEEE F. N. Kılınçer and M. K. Demir, “ÇİMLENDİRİLMİŞ BAZI TAHIL VE BAKLAGİLLERİN FİZİKSEL VE KİMYASAL ÖZELLİKLERİ”, The Journal of Food, vol. 44, no. 3, pp. 419–429, 2019, doi: 10.15237/gida.GD19019.
ISNAD Kılınçer, Fatma Nur - Demir, Mustafa Kürşat. “ÇİMLENDİRİLMİŞ BAZI TAHIL VE BAKLAGİLLERİN FİZİKSEL VE KİMYASAL ÖZELLİKLERİ”. Gıda 44/3 (May 2019), 419-429. https://doi.org/10.15237/gida.GD19019.
JAMA Kılınçer FN, Demir MK. ÇİMLENDİRİLMİŞ BAZI TAHIL VE BAKLAGİLLERİN FİZİKSEL VE KİMYASAL ÖZELLİKLERİ. The Journal of Food. 2019;44:419–429.
MLA Kılınçer, Fatma Nur and Mustafa Kürşat Demir. “ÇİMLENDİRİLMİŞ BAZI TAHIL VE BAKLAGİLLERİN FİZİKSEL VE KİMYASAL ÖZELLİKLERİ”. Gıda, vol. 44, no. 3, 2019, pp. 419-2, doi:10.15237/gida.GD19019.
Vancouver Kılınçer FN, Demir MK. ÇİMLENDİRİLMİŞ BAZI TAHIL VE BAKLAGİLLERİN FİZİKSEL VE KİMYASAL ÖZELLİKLERİ. The Journal of Food. 2019;44(3):419-2.

Cited By









by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/