Research Article
BibTex RIS Cite

Year 2025, Volume: 9 Issue: 2, 409 - 419, 26.06.2025
https://doi.org/10.31015/2025.2.14

Abstract

References

  • Agüera, E., Cabello, P., & de la Haba, P. (2010). Induction of leaf senescence by low nitrogen nutrition in sunflower (Helianthus annuus) plants. Physiologia Plantarum 138 (3), 256–267. https://doi.org/10.1111/J.1399-3054.2009.01336.X
  • Anas, M., Liao, F., Verma, K. K., Sarwar, M. A., Mahmood, A., Chen, Z. L., Li, Q., Zeng, X. P., Liu, Y., & Li, Y. R. (2020). Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biological Research 53 (1), 1–20. https://doi.org/10.1186/S40659-020-00312-4
  • Andriolo, J. L., Erpen, L., Cardoso, F. L., Cocco, C., Casagrande, G. S., & Jänisch, D. I. (2011). Nitrogen levels in the cultivation of strawberries in soilless culture. Horticultura Brasileira 29 (4), 516–519. https://doi.org/10.1590/S0102-05362011000400012
  • Balcha, A., & Balcha, A. (2014). Effect of Phosphorus Rates and Varieties on Grain Yield, Nutrient Uptake and Phosphorus Efficiency of Tef [Eragrostis tef (Zucc.) Trotter]. American Journal of Plant Sciences 5 (3), 262–267. https://doi.org/10.4236/AJPS.2014.53035
  • Balyan, H. S., Gahlaut, V., Kumar, A., Jaiswal, V., Dhariwal, R., Tyagi, S., Agarwal, P., Kumari, S., & Gupta, P. K. (2016). Nitrogen and Phosphorus Use Efficiencies in Wheat: Physiology, Phenotyping, Genetics, and Breeding. Plant Breeding Reviews 40, 167–234. https://doi.org/10.1002/9781119279723.CH4
  • Bénard, C., Gautier, H., Bourgaud, F., Grasselly, D., Navez, B., Caris-Veyrat, C., Weiss, M., & Génard, M. (2009). Effects of low nitrogen supply on tomato (Solanum lycopersicum) fruit yield and quality with special emphasis on sugars, acids, ascorbate, carotenoids, and phenolic compounds. Journal of Agricultural and Food Chemistry 57 (10), 4112–4123. https://doi.org/10.1021/JF8036374
  • Cartelat, A., Cerovic, Z. G., Goulas, Y., Meyer, S., Lelarge, C., Prioul, J. L., Barbottin, A., Jeuffroy, M. H., Gate, P., Agati, G., & Moya, I. (2005). Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crops Research 91 (1), 35–49. https://doi.org/10.1016/J.FCR.2004.05.002
  • Castellanos, M. T., Cabello, M. J., Cartagena, M. del C., Tarquis, A. M., Arce, A., & Ribas, F. (2011). Dinâmica do crescimento e da produtividade do melão em resposta ao fertilizante nitrogenado. Scientia Agricola 68 (2), 191–199. https://doi.org/10.1590/S0103-90162011000200009
  • Cavalcante, V. S., Prado, R. de M., Vasconcelos, R. de L., Almeida, H. J. de, & Silva, T. R. da. (2019). Growth and Nutritional Efficiency of Watermelon Plants Grown under Macronutrient Deficiencies. HortScience 54 (4), 738–742. https://doi.org/10.21273/HORTSCI13807-18
  • Coşkun, Ö. F. (2023). The effect of grafting on morphological, physiological, and molecular changes induced by drought stress in cucumber. Sustainability, 15(1), 875. https://doi.org/10.3390/su15010875
  • Coşkun, Ö. F. (2025). Association mapping for drought tolerance in watermelons (Citrullus lanatus L.). Horticulturae, 11(2), 193. https://doi.org/10.3390/horticulturae11020193
  • FAO. (2024). Food and Agriculture Organization of the United Nations. Retrieved on February 1, 2025, from https://www.fao.org/faostat/en/#data/QCL.
  • Fernández-Escobar, R., Beltrán, G., Sánchez-Zamora, M. A., García-Novelo, J., Aguilera, M. P., & Uceda, M. (2006). Olive Oil Quality Decreases with Nitrogen Over-fertilization. HortScience 41 (1), 215–219. https://doi.org/10.21273/HORTSCI.41.1.215
  • Gorski, S. F. (2019). Melons. Detecting Mineral Nutrient Deficiencies in Tropical and Temperate Crops, 283–293. https://doi.org/10.1201/9780429035258-26
  • Goyal, S. S., & Huffaker, R. C. (2015). Nitrogen Toxicity in Plants. Nitrogen in Crop Production, 97–118. https://doi.org/10.2134/1990.NITROGENINCROPPRODUCTION.C6
  • Graham, P. H. (1984). Plant Factors Affecting Nodulation and Symbiotic Nitrogen Fixation in Legumes. Biological Nitrogen Fixation 75–98. https://doi.org/10.1007/978-1-4613-2747-9_4
  • Hoque, M. M., Ajwa, H., Othman, M., Smith, R., & Cahn, M. (2010). Yield and Postharvest Quality of Lettuce in Response to Nitrogen, Phosphorus, and Potassium Fertilizers. HortScience 45 (10), 1539–1544. https://doi.org/10.21273/HORTSCI.45.10.1539
  • Inkham, C., Panjama, K., Seehanam, P., & Ruamrungsri, S. (2021). Effect of nitrogen, potassium and calcium concentrations on growth, yield and nutritional quality of green oak lettuce. Acta Horticulturae, 1312, 409–415. https://doi.org/10.17660/ACTAHORTIC.2021.1312.59
  • Janpen, C., Kanthawang, N., Inkham, C., Tsan, F. Y., & Sommano, S. R. (2019). Physiological responses of hydroponically-grown Japanese mint under nutrient deficiency. PeerJ (9), e7751. https://doi.org/10.7717/PEERJ.7751/TABLE-2
  • Linquist, B., Van Groenigen, K. J., Adviento-Borbe, M. A., Pittelkow, C., & Van Kessel, C. (2012). An agronomic assessment of greenhouse gas emissions from major cereal crops. Global Change Biology 18 (1), 194–209. https://doi.org/10.1111/J.1365-2486.2011.02502.X
  • Ma, Q., Longnecker, N., & Dracup, M. (1997). Nitrogen Deficiency Slows Leaf Development and Delays Flowering in Narrow-leafed Lupin. Annals of Botany 79 (4), 403–409. https://doi.org/10.1006/ANBO.1996.0361
  • Mălinaş, A., Vidican, R., Rotar, I., Mălinaş, C., Moldovan, C. M., & Proorocu, M. (2022). Current Status and Future Prospective for Nitrogen Use Efficiency in Wheat (Triticum aestivum L.). Plants 11 (2), 217. https://doi.org/10.3390/PLANTS11020217/S1
  • Neilsen, G., Kappel, F., & Neilsen, D. (2007). Fertigation and Crop Load Affect Yield, Nutrition, and Fruit Quality of ‘Lapins’ Sweet Cherry on Gisela 5 Rootstock. HortScience 42 (6), 1456–1462. https://doi.org/10.21273/HORTSCI.42.6.1456
  • Ning, P., Yang, L., Li, C., & Fritschi, F. B. (2018). Post-silking carbon partitioning under nitrogen deficiency revealed sink limitation of grain yield in maize. Journal of Experimental Botany 69 (7), 1707–1719. https://doi.org/10.1093/jxb/erx496
  • Pant, B. D., Musialak-Lange, M., Nuc, P., May, P., Buhtz, A., Kehr, J., Walther, D., & Scheible, W.-R. (2009). Identification of Nutrient-Responsive Arabidopsis and Rapeseed MicroRNAs by Comprehensive Real-Time Polymerase Chain Reaction Profiling and Small RNA Sequencing . Plant Physiology 150 (3), 1541–1555. https://doi.org/10.1104/pp.109.139139
  • Peña-Fleitas, M. T., Gallardo, M., Thompson, R. B., Farneselli, M., & Padilla, F. M. (2015). Assessing crop N status of fertigated vegetable crops using plant and soil monitoring techniques. Annals of Applied Biology 167 (3), 387–405. https://doi.org/10.1111/AAB.12235
  • Ruiz, J. M., Rivero, R. M., Cervilla, L. M., Castellano, R., & Romero, L. (2006). Grafting to improve nitrogen-use efficiency traits in tobacco plants. Journal of the Science of Food and Agriculture 86 (6), 1014–1021. https://doi.org/10.1002/JSFA.2450
  • Sarı, N., Yücel, S., Ekiz, H., Yetişir, H., Tunalı, C. (1999). Dihaploidizasyon Yöntemi ile Örtüaltı Tarımına Elverişli ve Fusarium oxysporum f.sp. melonis’e Dayanıklı Kavun Çeşitlerinin Geliştirmesi. TÜBİTAK projesi sonuç raporu, 150.
  • Scheible, W. R., Morcuende, R., Czechowski, T., Fritz, C., Osuna, D., Palacios-Rojas, N., Schindelasch, D., Thimm, O., Udvardi, M. K., & Stitt, M. (2004). Genome-Wide Reprogramming of Primary and Secondary Metabolism, Protein Synthesis, Cellular Growth Processes, and the Regulatory Infrastructure of Arabidopsis in Response to Nitrogen. Plant Physiology 136 (1), 2483. https://doi.org/10.1104/PP.104.047019
  • Shin, S. Y., Jeong, J. S., Lim, J. Y., Kim, T., Park, J. H., Kim, J. K., & Shin, C. (2018). Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies. BMC Genomics 19 (1). https://doi.org/10.1186/S12864-018-4897-1
  • Souri, M. K., & Dehnavard, S. (2018). Tomato plant growth, leaf nutrient concentrations and fruit quality under nitrogen foliar applications. Advances in Horticultural Science 32 (1), 41–47. https://doi.org/10.13128/AHS-21894
  • Tagem, (2018). Gübre Sektör Politika Belgesi. Tagem Arge ve İnovasyon 2018-2022, Ankara, Türkiye, ss. 21-24
  • Ulas, A., Doganci, E., Ulas, F., & Yetisir, H. (2019). Root-growth Characteristics Contributing to Genotypic Variation in Nitrogen Efficiency of Bottle Gourd and Rootstock Potential for Watermelon. Plants, 8 (3), 77. https://doi.org/10.3390/PLANTS8030077
  • Ulas, A., Schulte Auf’m Erley, G., Kamh, M., Wiesler, F., & Horst, W. J. (2012). Root-growth characteristics contributing to genotypic variation in nitrogen efficiency of oilseed rape. Journal of Plant Nutrition and Soil Science 175 (3), 489–498. https://doi.org/10.1002/JPLN.201100301
  • Wahocho, N. A., Maitlo, A. A., Baloch, Q. B., Kaleri, A. A., Rajput, L. B., Talpur, N. A., Sheikh, Z. A., Mengal, F. H., & Wahocho, S. A. (2017). Effect of Varying Levels of Nitrogen on the Growth and Yield of Muskmelon (Cucumis melo L.). Journal of Basic & Applied Sciences 13, 448–453. https://doi.org/10.6000/1927-5129.2017.13.74
  • Wang, J., Song, K., Sun, L., Qin, Q., Sun, Y., Pan, J., & Xue, Y. (2019). Morphological and Transcriptome Analysis of Wheat Seedlings Response to Low Nitrogen Stress. Plants 8 (4), 98. https://doi.org/10.3390/PLANTS8040098
  • Wang, Y., Fu, B., Pan, L., Chen, L., Fu, X., & Li, K. (2013). Overexpression of Arabidopsis Dof1, GS1 and GS2 Enhanced Nitrogen Assimilation in Transgenic Tobacco Grown Under Low-Nitrogen Conditions. Plant Molecular Biology Reporter, 31 (4), 886–900. https://doi.org/10.1007/s11105-013-0561-8
  • Wei, M., Zhang, A., Li, H., Tang, Z., & Chen, X. (2015). Growth and Physiological Response to Nitrogen Deficiency and Re-supply in Leaf-vegetable Sweetpotato (Ipomoea batatas Lam). HortScience 50 (5), 754–758. https://doi.org/10.21273/HORTSCI.50.5.754
  • Xiong, Q., Tang, G., Zhong, L., He, H., & Chen, X. (2018). Response to nitrogen deficiency and compensation on physiological characteristics, yield formation, and nitrogen utilization of rice. Frontiers in Plant Science 9, 316347. https://doi.org/10.3389/FPLS.2018.01075/BIBTEX
  • Xu, Z., Zhong, S., Li, X., Li, W., Rothstein, S. J., Zhang, S., Bi, Y., & Xie, C. (2011). Genome-Wide Identification of MicroRNAs in Response to Low Nitrate Availability in Maize Leaves and Roots. PLOS ONE, 6 (11), e28009. https://doi.org/10.1371/JOURNAL.PONE.0028009
  • Yam, R. S. W., Fan, Y. T., Lin, J. T., Fan, C., & Lo, H. F. (2020). Quality Improvement of Netted Melon (Cucumis melo L. var. reticulatus) through Precise Nitrogen and Potassium Management in a Hydroponic System. Agronomy 10 (6), 816. https://doi.org/10.3390/AGRONOMY10060816
  • Zhao, D., Reddy, K. R., Kakani, V. G., & Reddy, V. R. (2005). Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy, 22 (4), 391–403. https://doi.org/10.1016/J.EJA.2004.06.005

Effect of low nitrogen stress on plant growth traits of double haploid melon (Cucumis melo var. cantalupensis) lines with different low nitrogen Tolerances

Year 2025, Volume: 9 Issue: 2, 409 - 419, 26.06.2025
https://doi.org/10.31015/2025.2.14

Abstract

In recent years, excessive nitrogen (N) fertilizer application has adversely affected the ecosystem. Additionally, inefficient fertilizer use can diminish soil fertility and result in the loss of organic matter. Limiting access to N fertilizer leads to increased prices, which consequently results in reduced crop productivity. Developing/breeding nitrogen-efficient plants is another strategy to enhance N uptake and efficiency in crops. The aim of this study was to assess the genotypic differences of 27 double haploid (DH) melon genotypes under low nitrogen (0.3 mM) conditions based on biomass parameters in hydroponic growth conditions. Significant differences were determined among the genotypes in all the parameters investigated. At low nitrogen levels, the highest stem fresh weight was recorded in genotypes C19 (48.53 g/plant) and D10 (42.57 g/plant), while the highest leaf fresh weight was observed in genotypes C8 (51.57 g/plant) and C19 (51.37 g/plant). In plants subjected to low N, the highest stem dry weight was found in genotypes E13 and C19, whereas the lowest was recorded in genotypesB9 and C5 with 2.10 g/plant. Under low nitrogen conditions, genotypes I7 and CA7 exhibited the highest root fresh and dry weights, respectively. The average shoot/root ratio of melon genotypes under low nitrogen conditions was 1.40, with the highest ratio in genotype B5 (2.69) and the lowest in genotype I7 (0.76). Melon genotypes had an average root length of 4000.92 cm under low nitrogen conditions, with genotype I7 having the longest root with 8194.43 cm and genotype B5 having the shortest root with 1795.34 cm. Under low nitrogen stress, genotypes displayed significant variation in plant growth. In terms of shoot fresh weight, there was a two-fold difference between susceptible and tolerant genotypes, while for root fresh weight, the difference was four-fold. This indicates that tolerance to nitrogen is attributed to changes in the root system rather than the shoot system.

Ethical Statement

Peer-review Externally peer-reviewed. Declaration of Interests Declaration of Interests The authors state there is no competing interest. Author contribution The contribution of the authors to the present study is equal. All the authors read and approved the final manuscript. All the authors verify that the text, figures, and tables are original and that they have not been published before.

References

  • Agüera, E., Cabello, P., & de la Haba, P. (2010). Induction of leaf senescence by low nitrogen nutrition in sunflower (Helianthus annuus) plants. Physiologia Plantarum 138 (3), 256–267. https://doi.org/10.1111/J.1399-3054.2009.01336.X
  • Anas, M., Liao, F., Verma, K. K., Sarwar, M. A., Mahmood, A., Chen, Z. L., Li, Q., Zeng, X. P., Liu, Y., & Li, Y. R. (2020). Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biological Research 53 (1), 1–20. https://doi.org/10.1186/S40659-020-00312-4
  • Andriolo, J. L., Erpen, L., Cardoso, F. L., Cocco, C., Casagrande, G. S., & Jänisch, D. I. (2011). Nitrogen levels in the cultivation of strawberries in soilless culture. Horticultura Brasileira 29 (4), 516–519. https://doi.org/10.1590/S0102-05362011000400012
  • Balcha, A., & Balcha, A. (2014). Effect of Phosphorus Rates and Varieties on Grain Yield, Nutrient Uptake and Phosphorus Efficiency of Tef [Eragrostis tef (Zucc.) Trotter]. American Journal of Plant Sciences 5 (3), 262–267. https://doi.org/10.4236/AJPS.2014.53035
  • Balyan, H. S., Gahlaut, V., Kumar, A., Jaiswal, V., Dhariwal, R., Tyagi, S., Agarwal, P., Kumari, S., & Gupta, P. K. (2016). Nitrogen and Phosphorus Use Efficiencies in Wheat: Physiology, Phenotyping, Genetics, and Breeding. Plant Breeding Reviews 40, 167–234. https://doi.org/10.1002/9781119279723.CH4
  • Bénard, C., Gautier, H., Bourgaud, F., Grasselly, D., Navez, B., Caris-Veyrat, C., Weiss, M., & Génard, M. (2009). Effects of low nitrogen supply on tomato (Solanum lycopersicum) fruit yield and quality with special emphasis on sugars, acids, ascorbate, carotenoids, and phenolic compounds. Journal of Agricultural and Food Chemistry 57 (10), 4112–4123. https://doi.org/10.1021/JF8036374
  • Cartelat, A., Cerovic, Z. G., Goulas, Y., Meyer, S., Lelarge, C., Prioul, J. L., Barbottin, A., Jeuffroy, M. H., Gate, P., Agati, G., & Moya, I. (2005). Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crops Research 91 (1), 35–49. https://doi.org/10.1016/J.FCR.2004.05.002
  • Castellanos, M. T., Cabello, M. J., Cartagena, M. del C., Tarquis, A. M., Arce, A., & Ribas, F. (2011). Dinâmica do crescimento e da produtividade do melão em resposta ao fertilizante nitrogenado. Scientia Agricola 68 (2), 191–199. https://doi.org/10.1590/S0103-90162011000200009
  • Cavalcante, V. S., Prado, R. de M., Vasconcelos, R. de L., Almeida, H. J. de, & Silva, T. R. da. (2019). Growth and Nutritional Efficiency of Watermelon Plants Grown under Macronutrient Deficiencies. HortScience 54 (4), 738–742. https://doi.org/10.21273/HORTSCI13807-18
  • Coşkun, Ö. F. (2023). The effect of grafting on morphological, physiological, and molecular changes induced by drought stress in cucumber. Sustainability, 15(1), 875. https://doi.org/10.3390/su15010875
  • Coşkun, Ö. F. (2025). Association mapping for drought tolerance in watermelons (Citrullus lanatus L.). Horticulturae, 11(2), 193. https://doi.org/10.3390/horticulturae11020193
  • FAO. (2024). Food and Agriculture Organization of the United Nations. Retrieved on February 1, 2025, from https://www.fao.org/faostat/en/#data/QCL.
  • Fernández-Escobar, R., Beltrán, G., Sánchez-Zamora, M. A., García-Novelo, J., Aguilera, M. P., & Uceda, M. (2006). Olive Oil Quality Decreases with Nitrogen Over-fertilization. HortScience 41 (1), 215–219. https://doi.org/10.21273/HORTSCI.41.1.215
  • Gorski, S. F. (2019). Melons. Detecting Mineral Nutrient Deficiencies in Tropical and Temperate Crops, 283–293. https://doi.org/10.1201/9780429035258-26
  • Goyal, S. S., & Huffaker, R. C. (2015). Nitrogen Toxicity in Plants. Nitrogen in Crop Production, 97–118. https://doi.org/10.2134/1990.NITROGENINCROPPRODUCTION.C6
  • Graham, P. H. (1984). Plant Factors Affecting Nodulation and Symbiotic Nitrogen Fixation in Legumes. Biological Nitrogen Fixation 75–98. https://doi.org/10.1007/978-1-4613-2747-9_4
  • Hoque, M. M., Ajwa, H., Othman, M., Smith, R., & Cahn, M. (2010). Yield and Postharvest Quality of Lettuce in Response to Nitrogen, Phosphorus, and Potassium Fertilizers. HortScience 45 (10), 1539–1544. https://doi.org/10.21273/HORTSCI.45.10.1539
  • Inkham, C., Panjama, K., Seehanam, P., & Ruamrungsri, S. (2021). Effect of nitrogen, potassium and calcium concentrations on growth, yield and nutritional quality of green oak lettuce. Acta Horticulturae, 1312, 409–415. https://doi.org/10.17660/ACTAHORTIC.2021.1312.59
  • Janpen, C., Kanthawang, N., Inkham, C., Tsan, F. Y., & Sommano, S. R. (2019). Physiological responses of hydroponically-grown Japanese mint under nutrient deficiency. PeerJ (9), e7751. https://doi.org/10.7717/PEERJ.7751/TABLE-2
  • Linquist, B., Van Groenigen, K. J., Adviento-Borbe, M. A., Pittelkow, C., & Van Kessel, C. (2012). An agronomic assessment of greenhouse gas emissions from major cereal crops. Global Change Biology 18 (1), 194–209. https://doi.org/10.1111/J.1365-2486.2011.02502.X
  • Ma, Q., Longnecker, N., & Dracup, M. (1997). Nitrogen Deficiency Slows Leaf Development and Delays Flowering in Narrow-leafed Lupin. Annals of Botany 79 (4), 403–409. https://doi.org/10.1006/ANBO.1996.0361
  • Mălinaş, A., Vidican, R., Rotar, I., Mălinaş, C., Moldovan, C. M., & Proorocu, M. (2022). Current Status and Future Prospective for Nitrogen Use Efficiency in Wheat (Triticum aestivum L.). Plants 11 (2), 217. https://doi.org/10.3390/PLANTS11020217/S1
  • Neilsen, G., Kappel, F., & Neilsen, D. (2007). Fertigation and Crop Load Affect Yield, Nutrition, and Fruit Quality of ‘Lapins’ Sweet Cherry on Gisela 5 Rootstock. HortScience 42 (6), 1456–1462. https://doi.org/10.21273/HORTSCI.42.6.1456
  • Ning, P., Yang, L., Li, C., & Fritschi, F. B. (2018). Post-silking carbon partitioning under nitrogen deficiency revealed sink limitation of grain yield in maize. Journal of Experimental Botany 69 (7), 1707–1719. https://doi.org/10.1093/jxb/erx496
  • Pant, B. D., Musialak-Lange, M., Nuc, P., May, P., Buhtz, A., Kehr, J., Walther, D., & Scheible, W.-R. (2009). Identification of Nutrient-Responsive Arabidopsis and Rapeseed MicroRNAs by Comprehensive Real-Time Polymerase Chain Reaction Profiling and Small RNA Sequencing . Plant Physiology 150 (3), 1541–1555. https://doi.org/10.1104/pp.109.139139
  • Peña-Fleitas, M. T., Gallardo, M., Thompson, R. B., Farneselli, M., & Padilla, F. M. (2015). Assessing crop N status of fertigated vegetable crops using plant and soil monitoring techniques. Annals of Applied Biology 167 (3), 387–405. https://doi.org/10.1111/AAB.12235
  • Ruiz, J. M., Rivero, R. M., Cervilla, L. M., Castellano, R., & Romero, L. (2006). Grafting to improve nitrogen-use efficiency traits in tobacco plants. Journal of the Science of Food and Agriculture 86 (6), 1014–1021. https://doi.org/10.1002/JSFA.2450
  • Sarı, N., Yücel, S., Ekiz, H., Yetişir, H., Tunalı, C. (1999). Dihaploidizasyon Yöntemi ile Örtüaltı Tarımına Elverişli ve Fusarium oxysporum f.sp. melonis’e Dayanıklı Kavun Çeşitlerinin Geliştirmesi. TÜBİTAK projesi sonuç raporu, 150.
  • Scheible, W. R., Morcuende, R., Czechowski, T., Fritz, C., Osuna, D., Palacios-Rojas, N., Schindelasch, D., Thimm, O., Udvardi, M. K., & Stitt, M. (2004). Genome-Wide Reprogramming of Primary and Secondary Metabolism, Protein Synthesis, Cellular Growth Processes, and the Regulatory Infrastructure of Arabidopsis in Response to Nitrogen. Plant Physiology 136 (1), 2483. https://doi.org/10.1104/PP.104.047019
  • Shin, S. Y., Jeong, J. S., Lim, J. Y., Kim, T., Park, J. H., Kim, J. K., & Shin, C. (2018). Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies. BMC Genomics 19 (1). https://doi.org/10.1186/S12864-018-4897-1
  • Souri, M. K., & Dehnavard, S. (2018). Tomato plant growth, leaf nutrient concentrations and fruit quality under nitrogen foliar applications. Advances in Horticultural Science 32 (1), 41–47. https://doi.org/10.13128/AHS-21894
  • Tagem, (2018). Gübre Sektör Politika Belgesi. Tagem Arge ve İnovasyon 2018-2022, Ankara, Türkiye, ss. 21-24
  • Ulas, A., Doganci, E., Ulas, F., & Yetisir, H. (2019). Root-growth Characteristics Contributing to Genotypic Variation in Nitrogen Efficiency of Bottle Gourd and Rootstock Potential for Watermelon. Plants, 8 (3), 77. https://doi.org/10.3390/PLANTS8030077
  • Ulas, A., Schulte Auf’m Erley, G., Kamh, M., Wiesler, F., & Horst, W. J. (2012). Root-growth characteristics contributing to genotypic variation in nitrogen efficiency of oilseed rape. Journal of Plant Nutrition and Soil Science 175 (3), 489–498. https://doi.org/10.1002/JPLN.201100301
  • Wahocho, N. A., Maitlo, A. A., Baloch, Q. B., Kaleri, A. A., Rajput, L. B., Talpur, N. A., Sheikh, Z. A., Mengal, F. H., & Wahocho, S. A. (2017). Effect of Varying Levels of Nitrogen on the Growth and Yield of Muskmelon (Cucumis melo L.). Journal of Basic & Applied Sciences 13, 448–453. https://doi.org/10.6000/1927-5129.2017.13.74
  • Wang, J., Song, K., Sun, L., Qin, Q., Sun, Y., Pan, J., & Xue, Y. (2019). Morphological and Transcriptome Analysis of Wheat Seedlings Response to Low Nitrogen Stress. Plants 8 (4), 98. https://doi.org/10.3390/PLANTS8040098
  • Wang, Y., Fu, B., Pan, L., Chen, L., Fu, X., & Li, K. (2013). Overexpression of Arabidopsis Dof1, GS1 and GS2 Enhanced Nitrogen Assimilation in Transgenic Tobacco Grown Under Low-Nitrogen Conditions. Plant Molecular Biology Reporter, 31 (4), 886–900. https://doi.org/10.1007/s11105-013-0561-8
  • Wei, M., Zhang, A., Li, H., Tang, Z., & Chen, X. (2015). Growth and Physiological Response to Nitrogen Deficiency and Re-supply in Leaf-vegetable Sweetpotato (Ipomoea batatas Lam). HortScience 50 (5), 754–758. https://doi.org/10.21273/HORTSCI.50.5.754
  • Xiong, Q., Tang, G., Zhong, L., He, H., & Chen, X. (2018). Response to nitrogen deficiency and compensation on physiological characteristics, yield formation, and nitrogen utilization of rice. Frontiers in Plant Science 9, 316347. https://doi.org/10.3389/FPLS.2018.01075/BIBTEX
  • Xu, Z., Zhong, S., Li, X., Li, W., Rothstein, S. J., Zhang, S., Bi, Y., & Xie, C. (2011). Genome-Wide Identification of MicroRNAs in Response to Low Nitrate Availability in Maize Leaves and Roots. PLOS ONE, 6 (11), e28009. https://doi.org/10.1371/JOURNAL.PONE.0028009
  • Yam, R. S. W., Fan, Y. T., Lin, J. T., Fan, C., & Lo, H. F. (2020). Quality Improvement of Netted Melon (Cucumis melo L. var. reticulatus) through Precise Nitrogen and Potassium Management in a Hydroponic System. Agronomy 10 (6), 816. https://doi.org/10.3390/AGRONOMY10060816
  • Zhao, D., Reddy, K. R., Kakani, V. G., & Reddy, V. R. (2005). Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy, 22 (4), 391–403. https://doi.org/10.1016/J.EJA.2004.06.005
There are 42 citations in total.

Details

Primary Language English
Subjects Vegetable Growing and Treatment
Journal Section Research Articles
Authors

Alim Aydın 0000-0002-9424-5556

Halit Yetişir 0000-0001-6955-9513

Publication Date June 26, 2025
Submission Date March 20, 2025
Acceptance Date May 13, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Aydın, A., & Yetişir, H. (2025). Effect of low nitrogen stress on plant growth traits of double haploid melon (Cucumis melo var. cantalupensis) lines with different low nitrogen Tolerances. International Journal of Agriculture Environment and Food Sciences, 9(2), 409-419. https://doi.org/10.31015/2025.2.14

Abstracting & Indexing Services


© International Journal of Agriculture, Environment and Food Sciences

All content published by the journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
This license allows others to share and adapt the material for non-commercial purposes, provided proper attribution is given to the original work.
Authors retain the copyright of their articles and grant the journal the right of first publication under an open-access model

Web:  dergipark.org.tr/jaefs  E-mail:  editorialoffice@jaefs.com Phone: +90 850 309 59 27