Research Article
BibTex RIS Cite

Year 2025, Volume: 9 Issue: 2, 539 - 550, 26.06.2025
https://doi.org/10.31015/2025.2.27

Abstract

References

  • Ahmadi-Lahijani, M. J., & Emam, Y. (2016). Post-anthesis Drought Stress Effects on Photosynthesis Rate and Chlorophyll Content of Wheat Genotypes. Journal of Plant Physiology and Breeding, 6 (1): 35-52.
  • Akter, N., & Rafiqul Islam, M. (2017). Heat stress effects and management in wheat. A review. Agronomy for Sustainable Development, 37 (5), 37. https://doi.org/10.1007/s13593-017-0443-9.
  • Barutçular, C., Yıldırım, M., Koç, M., Akıncı, C., Toptaş, İ., Albayrak, Ö., Tanrıkulu, A., El Sabagh, A. (2016). Evaluation of Spad Chlorophyll in Spring Wheat Genotypes Under Different Environments. Fresenius Environmental Bulletin, 25 (4): 1258-1266.
  • Beta, T., Nam, S., Dexter, J. E., Sapirstein, H. D., 2005. Phenolic Content and Antioxidant Activity of Pearled Wheat and Roller-Milled Fractions. Cereal Chemistry, 82 (4): 390-393.
  • Bracho-Mujica, G., Rötter, R. P., Haakana, M., Palosuo, T., Fronzek, S., Asseng, S., Yi, C., Ewert, F., Gaiser, T., Kassie, B., Paff, K., Rezaei, E. E., Rodríguez, A., Ruiz-Ramos, M., Srivastava, A. K., Stratonovitch, P., Tao, F., & Semenov, M. A. (2024). Effects of changes in climatic means, variability, and agro-technologies on future wheat and maize yields at 10 sites across the globe. Agricultural and Forest Meteorology, 346, 109887. https://doi.org/10.1016/j.agrformet.2024.109887.
  • Craufurd, P. Q., & Wheeler, T. R. (2009). Climate change and the flowering time of annual crops. Journal of Experimental Botany, 60 (9), 2529-2539. https://doi.org/10.1093/jxb/erp196.
  • de Mendiburu, F. (2019). Package ‘agricolae’. R Package, Version 1-2. Retrieved on Dec, 10, 2021.
  • Demirhan, A. A., Bayraktar, S. S. (2025). The impact of temperature and precipitation on wheat production in Türkiye. Central Bank Review, 25(1), 100191. https://doi.org/10.1016/j.cbrev.2025.100191.
  • Farooq, M., Bramley, H., Palta, J. A., & Siddique, K. H. M. (2011). Heat Stress in Wheat during Reproductive and Grain-Filling Phases. Critical Reviews in Plant Sciences, 30(6), 491-507. https://doi.org/10.1080/07352689.2011.615687.
  • Fernie, E., Tan, D. K. Y., Liu, S. Y., Ullah, N., & Khoddami, A. (2022). Post-Anthesis Heat Influences Grain Yield, Physical and Nutritional Quality in Wheat: A Review. Agriculture, 12(6), 886. https://doi.org/10.3390/agriculture12060886.
  • Flohr, B. M., Hunt, J. R., Kirkegaard, J. A., Rheinheimer, B., Swan, T., Goward, L., Evans, J. R., & Bullock, M. (2020). Deep Soil Water-Use Determines the Yield Benefit of Long-Cycle Wheat. Frontiers in Plant Science, 11, 548. https://doi.org/10.3389/fpls.2020.00548.
  • Ghaffar, A., Hussain, N., Ajaj, R., Shahin, S. M., Bano, H., Javed, M., Khalid, A., Yasmin, M., Shah, K. H., Zaheer, M., Iqbal, M., Zafar, Z. U., & Athar, H.-R. (2023). Photosynthetic activity and metabolic profiling of bread wheat cultivars contrasting in drought tolerance. Frontiers in Plant Science, 14, 1123080. https://doi.org/10.3389/fpls.2023.1123080.
  • Hafeez, M. B., Zahra, N., Kausar, A., Li, J., Rehman, A., & Farooq, M. (2023). Influence of heat stress during grain development on the wheat grain yield, quality, and composition. Journal of Soil Science and Plant Nutrition. https://doi.org/10.1007/s42729-023-01386-1.
  • Kaluza, W. Z., McGrath, R. M., Roberts, T. C., & Schroeder, H. H. (1980). Separation of phenolics of sorghum bicolor (L.) Moench grain. Journal of Agricultural and Food Chemistry, 28 (6), 1191-1196. https://doi.org/10.1021/jf60232a039.
  • Kim, J., Savin, R., & Slafer, G. A. (2024). Quantifying pre- and post-anthesis heat waves on grain number and grain weight of contrasting wheat cultivars. Field Crops Research, 307, 109264. https://doi.org/10.1016/j.fcr.2024.109264.
  • Laddomada, B., Blanco, A., Mita, G., D’Amico, L., Singh, R. P., Ammar, K., Crossa, J., & Guzmán, C. (2021). Drought and Heat Stress Impacts on Phenolic Acids Accumulation in Durum Wheat Cultivars. Foods, 10(9), 2142. https://doi.org/10.3390/foods10092142.
  • Lama, S., Leiva, F., Vallenback, P., Chawade, A., & Kuktaite, R. (2023). Impacts of heat, drought, and combined heat–drought stress on yield, phenotypic traits, and gluten protein traits: Capturing stability of spring wheat in excessive environments. Frontiers in Plant Science, 14, 1179701. https://doi.org/10.3389/fpls.2023.1179701.
  • Ma D, Sun D, Li Y, Wang C, Xie Y, Guo T. Effect of nitrogen fertilisation and irrigation on phenolic content, phenolic acid composition, and antioxidant activity of winter wheat grain. J Sci Food Agric. 2015 Mar 30;95(5):1039-46. doi: 10.1002/jsfa.6790. Epub 2014 Jul 28. PMID: 24938593.
  • Mahdavi, S., Arzani, A., Mirmohammady Maibody, S. A. M., & Kadivar, M. (2022). Grain and flour quality of wheat genotypes grown under heat stress. Saudi Journal of Biological Sciences, 29 (10), 103417. https://doi.org/10.1016/j.sjbs.2022.103417.
  • Martini, D., Taddei, F., Ciccoritti, R., Pasquini, M., Nicoletti, I., Corradini, D., Grazia D'Egidio, M. (2015). Variation of total antioxidant activity and of phenolic acid, total phenolics and yellow coloured pigments in durum wheat (Triticum turgidum L. var. durum) as a function of genotype, crop year and growing area. Journal of Cereal Science, 65, 175-185. Doi: https://doi.org/10.1016/j.jcs.2015.06.012.
  • Meier, U. (1997). Growth Stages of Mono- and Dicotyledonous Plants. BBCH-Monograph Blackwell, Berlin, 1997.
  • Mirosavljević, M., Mikić, S., Župunski, V., Abdelhakim, L., Trkulja, D., Zhou, R., Špika, A. K., & Ottosen, C.-O. (2024). Effects of Heat Stress during Anthesis and Grain Filling Stages on Some Physiological and Agronomic Traits in Diverse Wheat Genotypes. Plants, 13(15), 2083. https://doi.org/10.3390/plants13152083.
  • Monostori, I., Árendás, T., Hoffman, B., Galiba, G., Gierczik, K., Szira, F., & Vágújfalvi, A. (2016). Relationship between SPAD value and grain yield can be affected by cultivar, environment and soil nitrogen content in wheat. Euphytica, 211 (1), 103-112. https://doi.org/10.1007/s10681-016-1741-z.
  • Nazim Ud Dowla, M. A. N., Edwards, I., O’Hara, G., Islam, S., & Ma, W. (2018). Developing Wheat for Improved Yield and Adaptation Under a Changing Climate: Optimization of a Few Key Genes. Engineering, 4 (4), 514-522. https://doi.org/10.1016/j.eng.2018.06.005.
  • Pantha, S., Kilian, B., Özkan, H., Zeibig, F., & Frei, M. (2024). Physiological and biochemical changes induced by drought stress during the stem elongation and anthesis stages in the Triticum genus. Environmental and Experimental Botany, 228, 106047. https://doi.org/10.1016/j.envexpbot.2024.106047.
  • Passioura, J. (2006). The drought environment: Physical, biological and agricultural perspectives. Journal of Experimental Botany, 58 (2), 113-117. https://doi.org/10.1093/jxb/erl212.
  • Ragaee, S., Abdelaal, E., & Noaman, M. (2006). Antioxidant activity and nutrient composition of selected cereals for food use. Food Chemistry, 98 (1), 32-38. https://doi.org/10.1016/j.foodchem.2005.04.039.
  • Shewry, P. R., & Hey, S. J. (2015). The contribution of wheat to human diet and health. Food and Energy Security, 4 (3), 178-202. https://doi.org/10.1002/fes3.64.
  • Sultana, N., Islam, S., Juhasz, A., & Ma, W. (2021). Wheat leaf senescence and its regulatory gene network. The Crop Journal, 9 (4), 703-717. https://doi.org/10.1016/j.cj.2021.01.004.
  • Tita, D., Mahdi, K., Devkota, K. P., & Devkota, M. (2025). Climate change and agronomic management: Addressing wheat yield gaps and sustainability challenges in the Mediterranean and MENA regions. Agricultural Systems, 224, 104242. https://doi.org/10.1016/j.agsy.2024.104242.

Bread wheat responses to post-generative drought and heat stress: physiological, yield and quality implications

Year 2025, Volume: 9 Issue: 2, 539 - 550, 26.06.2025
https://doi.org/10.31015/2025.2.27

Abstract

Post-generative drought and heat stress significantly impact wheat physiology, yield, and grain quality. This study investigated the effects of four different soil moisture levels (100%, 75%, 50%, and 25% of (WHC) water holding capacity) combined with heat stress (≥30⁰C) conditions on four bread wheat cultivars from stem elongation to harvest in semi-controlled green house conditions. This study examined the physiological responses of the plants as assessed by flag leaf area, SPAD chlorophyll measurements and changes in dry matter, from anthesis to harvest. Yield formation parameters, including the number of grains per ear and ear yield, were analyzed alongside grain quality traits such as crude protein, fiber, starch content, and flour color parameters (L*, a*, b*). Additionally, total phenolic content and antioxidant activity were evaluated to determine the impact of water stress on wheat's bioactive compounds.The results revealed that severe water deficit (50% and 25% WHC) led to a significant decline in flag leaf area, SPAD chlorophyll values and dry matter accumulation in anthesis and post anthesis stages, and also grain yield. The cultivars responded to increasing water stress conditions as accelerated senescence as a results of a decrease in chlorophyll and biomass production values. However, water deficiency (50 and 25% WHC) influenced quality traits differently, with causing increases in protein content, total phenolic content and antioxidant activity. It is clear that increasing temperature and drought conditions will cause wheat yield reductions supported by physiological responses. The findings provide significant insights into wheat yield and quality response under water-limited conditions, simulating spring rainfall deficiency and increasing temperatures in post-generative growth stages.

Thanks

A.Y is greateful to Prof. Dr. Ömer Erincik and Assist. Prof. Dr. Sevdiye Yorgancı (Aydın Adnan Menderes University, Faculty of Agriculture, Department of Plant Protection) for the experimental facility support (greenhouse). A.Y also sincerely thanks to Dr. Nermin Yaraşır and M.Sc. Melike Demirel Şimsek for their valuable help and assistance with green house experiment observations.

References

  • Ahmadi-Lahijani, M. J., & Emam, Y. (2016). Post-anthesis Drought Stress Effects on Photosynthesis Rate and Chlorophyll Content of Wheat Genotypes. Journal of Plant Physiology and Breeding, 6 (1): 35-52.
  • Akter, N., & Rafiqul Islam, M. (2017). Heat stress effects and management in wheat. A review. Agronomy for Sustainable Development, 37 (5), 37. https://doi.org/10.1007/s13593-017-0443-9.
  • Barutçular, C., Yıldırım, M., Koç, M., Akıncı, C., Toptaş, İ., Albayrak, Ö., Tanrıkulu, A., El Sabagh, A. (2016). Evaluation of Spad Chlorophyll in Spring Wheat Genotypes Under Different Environments. Fresenius Environmental Bulletin, 25 (4): 1258-1266.
  • Beta, T., Nam, S., Dexter, J. E., Sapirstein, H. D., 2005. Phenolic Content and Antioxidant Activity of Pearled Wheat and Roller-Milled Fractions. Cereal Chemistry, 82 (4): 390-393.
  • Bracho-Mujica, G., Rötter, R. P., Haakana, M., Palosuo, T., Fronzek, S., Asseng, S., Yi, C., Ewert, F., Gaiser, T., Kassie, B., Paff, K., Rezaei, E. E., Rodríguez, A., Ruiz-Ramos, M., Srivastava, A. K., Stratonovitch, P., Tao, F., & Semenov, M. A. (2024). Effects of changes in climatic means, variability, and agro-technologies on future wheat and maize yields at 10 sites across the globe. Agricultural and Forest Meteorology, 346, 109887. https://doi.org/10.1016/j.agrformet.2024.109887.
  • Craufurd, P. Q., & Wheeler, T. R. (2009). Climate change and the flowering time of annual crops. Journal of Experimental Botany, 60 (9), 2529-2539. https://doi.org/10.1093/jxb/erp196.
  • de Mendiburu, F. (2019). Package ‘agricolae’. R Package, Version 1-2. Retrieved on Dec, 10, 2021.
  • Demirhan, A. A., Bayraktar, S. S. (2025). The impact of temperature and precipitation on wheat production in Türkiye. Central Bank Review, 25(1), 100191. https://doi.org/10.1016/j.cbrev.2025.100191.
  • Farooq, M., Bramley, H., Palta, J. A., & Siddique, K. H. M. (2011). Heat Stress in Wheat during Reproductive and Grain-Filling Phases. Critical Reviews in Plant Sciences, 30(6), 491-507. https://doi.org/10.1080/07352689.2011.615687.
  • Fernie, E., Tan, D. K. Y., Liu, S. Y., Ullah, N., & Khoddami, A. (2022). Post-Anthesis Heat Influences Grain Yield, Physical and Nutritional Quality in Wheat: A Review. Agriculture, 12(6), 886. https://doi.org/10.3390/agriculture12060886.
  • Flohr, B. M., Hunt, J. R., Kirkegaard, J. A., Rheinheimer, B., Swan, T., Goward, L., Evans, J. R., & Bullock, M. (2020). Deep Soil Water-Use Determines the Yield Benefit of Long-Cycle Wheat. Frontiers in Plant Science, 11, 548. https://doi.org/10.3389/fpls.2020.00548.
  • Ghaffar, A., Hussain, N., Ajaj, R., Shahin, S. M., Bano, H., Javed, M., Khalid, A., Yasmin, M., Shah, K. H., Zaheer, M., Iqbal, M., Zafar, Z. U., & Athar, H.-R. (2023). Photosynthetic activity and metabolic profiling of bread wheat cultivars contrasting in drought tolerance. Frontiers in Plant Science, 14, 1123080. https://doi.org/10.3389/fpls.2023.1123080.
  • Hafeez, M. B., Zahra, N., Kausar, A., Li, J., Rehman, A., & Farooq, M. (2023). Influence of heat stress during grain development on the wheat grain yield, quality, and composition. Journal of Soil Science and Plant Nutrition. https://doi.org/10.1007/s42729-023-01386-1.
  • Kaluza, W. Z., McGrath, R. M., Roberts, T. C., & Schroeder, H. H. (1980). Separation of phenolics of sorghum bicolor (L.) Moench grain. Journal of Agricultural and Food Chemistry, 28 (6), 1191-1196. https://doi.org/10.1021/jf60232a039.
  • Kim, J., Savin, R., & Slafer, G. A. (2024). Quantifying pre- and post-anthesis heat waves on grain number and grain weight of contrasting wheat cultivars. Field Crops Research, 307, 109264. https://doi.org/10.1016/j.fcr.2024.109264.
  • Laddomada, B., Blanco, A., Mita, G., D’Amico, L., Singh, R. P., Ammar, K., Crossa, J., & Guzmán, C. (2021). Drought and Heat Stress Impacts on Phenolic Acids Accumulation in Durum Wheat Cultivars. Foods, 10(9), 2142. https://doi.org/10.3390/foods10092142.
  • Lama, S., Leiva, F., Vallenback, P., Chawade, A., & Kuktaite, R. (2023). Impacts of heat, drought, and combined heat–drought stress on yield, phenotypic traits, and gluten protein traits: Capturing stability of spring wheat in excessive environments. Frontiers in Plant Science, 14, 1179701. https://doi.org/10.3389/fpls.2023.1179701.
  • Ma D, Sun D, Li Y, Wang C, Xie Y, Guo T. Effect of nitrogen fertilisation and irrigation on phenolic content, phenolic acid composition, and antioxidant activity of winter wheat grain. J Sci Food Agric. 2015 Mar 30;95(5):1039-46. doi: 10.1002/jsfa.6790. Epub 2014 Jul 28. PMID: 24938593.
  • Mahdavi, S., Arzani, A., Mirmohammady Maibody, S. A. M., & Kadivar, M. (2022). Grain and flour quality of wheat genotypes grown under heat stress. Saudi Journal of Biological Sciences, 29 (10), 103417. https://doi.org/10.1016/j.sjbs.2022.103417.
  • Martini, D., Taddei, F., Ciccoritti, R., Pasquini, M., Nicoletti, I., Corradini, D., Grazia D'Egidio, M. (2015). Variation of total antioxidant activity and of phenolic acid, total phenolics and yellow coloured pigments in durum wheat (Triticum turgidum L. var. durum) as a function of genotype, crop year and growing area. Journal of Cereal Science, 65, 175-185. Doi: https://doi.org/10.1016/j.jcs.2015.06.012.
  • Meier, U. (1997). Growth Stages of Mono- and Dicotyledonous Plants. BBCH-Monograph Blackwell, Berlin, 1997.
  • Mirosavljević, M., Mikić, S., Župunski, V., Abdelhakim, L., Trkulja, D., Zhou, R., Špika, A. K., & Ottosen, C.-O. (2024). Effects of Heat Stress during Anthesis and Grain Filling Stages on Some Physiological and Agronomic Traits in Diverse Wheat Genotypes. Plants, 13(15), 2083. https://doi.org/10.3390/plants13152083.
  • Monostori, I., Árendás, T., Hoffman, B., Galiba, G., Gierczik, K., Szira, F., & Vágújfalvi, A. (2016). Relationship between SPAD value and grain yield can be affected by cultivar, environment and soil nitrogen content in wheat. Euphytica, 211 (1), 103-112. https://doi.org/10.1007/s10681-016-1741-z.
  • Nazim Ud Dowla, M. A. N., Edwards, I., O’Hara, G., Islam, S., & Ma, W. (2018). Developing Wheat for Improved Yield and Adaptation Under a Changing Climate: Optimization of a Few Key Genes. Engineering, 4 (4), 514-522. https://doi.org/10.1016/j.eng.2018.06.005.
  • Pantha, S., Kilian, B., Özkan, H., Zeibig, F., & Frei, M. (2024). Physiological and biochemical changes induced by drought stress during the stem elongation and anthesis stages in the Triticum genus. Environmental and Experimental Botany, 228, 106047. https://doi.org/10.1016/j.envexpbot.2024.106047.
  • Passioura, J. (2006). The drought environment: Physical, biological and agricultural perspectives. Journal of Experimental Botany, 58 (2), 113-117. https://doi.org/10.1093/jxb/erl212.
  • Ragaee, S., Abdelaal, E., & Noaman, M. (2006). Antioxidant activity and nutrient composition of selected cereals for food use. Food Chemistry, 98 (1), 32-38. https://doi.org/10.1016/j.foodchem.2005.04.039.
  • Shewry, P. R., & Hey, S. J. (2015). The contribution of wheat to human diet and health. Food and Energy Security, 4 (3), 178-202. https://doi.org/10.1002/fes3.64.
  • Sultana, N., Islam, S., Juhasz, A., & Ma, W. (2021). Wheat leaf senescence and its regulatory gene network. The Crop Journal, 9 (4), 703-717. https://doi.org/10.1016/j.cj.2021.01.004.
  • Tita, D., Mahdi, K., Devkota, K. P., & Devkota, M. (2025). Climate change and agronomic management: Addressing wheat yield gaps and sustainability challenges in the Mediterranean and MENA regions. Agricultural Systems, 224, 104242. https://doi.org/10.1016/j.agsy.2024.104242.
There are 30 citations in total.

Details

Primary Language English
Subjects Cereals and Legumes
Journal Section Research Articles
Authors

Ali Yiğit 0000-0003-3303-5122

Publication Date June 26, 2025
Submission Date April 6, 2025
Acceptance Date May 24, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Yiğit, A. (2025). Bread wheat responses to post-generative drought and heat stress: physiological, yield and quality implications. International Journal of Agriculture Environment and Food Sciences, 9(2), 539-550. https://doi.org/10.31015/2025.2.27

Abstracting & Indexing Services


© International Journal of Agriculture, Environment and Food Sciences

All content published by the journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
This license allows others to share and adapt the material for non-commercial purposes, provided proper attribution is given to the original work.
Authors retain the copyright of their articles and grant the journal the right of first publication under an open-access model

Web:  dergipark.org.tr/jaefs  E-mail:  editorialoffice@jaefs.com Phone: +90 850 309 59 27