BibTex RIS Kaynak Göster

Metal Resistance Properties of Lactobacillus plantarum Strains Isolated from Some Fermented Foods

Yıl 2016, Cilt: 14 Sayı: 4, 393 - 397, 01.12.2016

Öz

Lactic acid bacteria constituting the natural microflora of fermented foods may expose to metal stresses during food production. This could interfere with the fermentation by influencing the metabolic activity of LAB adversely. In this study, the resistance to Cu, Cd, Zn, Fe, Co, Al and Cr of 43 Lactobacillus plantarum strains isolated and identified from various sourdough, sucuk, white cheese and pickle samples as well as the existence of resistance genes were determined. L. plantarum strains were more resistant to Fe and Co than other metals studied. Also, Cu-transport ATPase was detected in the genome of L. plantarum PFC19, PFC22, PFC33 and PFC36 whereas Cd-transport ATPase was found at L. plantarum PFC7 and PFC36. Results showed that L. plantarum PFC7, PFC19, PFC22, PFC33 and PFC36 have potential as starter culture in fermented foods against possible metal stress due to their genetically based metal resistance properties

Kaynakça

  • Olaoye, O.A., Ntuen, I.G., 2011. Spoilage and preservation of meat: a general appraisal and potential of lactic acid bacteria as biological preservatives. International Research Journal of Biotechnology 2(1): 33-46.
  • Giller, K.E., Witter, E., McGrath, S., 1998. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biology and Biochemistry 30: 1389-1414.
  • Younan, S., Sakita, Z.G., Albuquerque, T.R., Keller, R., Bremer-Neto H., 2016. Chromium (VI) bioremediation by probiotics. Journal of the Science of Food and Agriculture 96: 3977-3982.
  • Berger, B., Pridmore, C., Barretto, F., Delmas- Julien, K., Schreiber, F., Brussow, H., 2007. Similarity and differences in the Lactobacillus acidophilus group identified by polyphasic analysis and comparative genomics. Journal of Bacteriology 189(4): 1311-1321.
  • van Kranenburg, R., Golic, N., Bongers, R., Leer, R.J., de Vos, W.M., Siezen, R.J., Kleerebezem, M., 2005. Functional analysis of three plasmids from Lactobacillus Environmental Microbiology 71(3): 1223-1230.
  • Halttunen, T., Salminen, S., Tahvonen, R., 2007. Rapid removal of lead and cadmium from water by specific lactic acid bacteria. International Journal of Food Microbiology 114(1): 30–35.
  • Mrvcic, J., Butorac, A., Solic, E., Stanzer, D., Bacun-Druzina, V., Cindric, M., Stehlik-Tomas, V., 2013. Characterization of Lactobacillus brevis L62 strain, highly tolerant to copper ions. World Journal of Microbiology and Biotechnology 29(1): 75-85.
  • Bhakta, J.N., Ohnishi, K., Munekage, Y., Iwasaki, K., Wei, M.Q., 2012. Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents. Journal of Applied Microbiology 112(6): 1193-1206.
  • Chang, Y.C., Choi, D., Kikuchi, S., 2012. Enhanced extraction of heavy metals in the two-step process with the mixed culture of Lactobacillus bulgaricus and Streptococcus thermophilus. Bioresource Technology 103(1): 477-480.
  • Schut, S., Zauner, S., Hampel, G., König, H., Claus, H., 2011. Biosorption of copper by wine- relevant lactobacilli. International Journal of Food Microbiology 145(1): 126-131.
  • Zhai, M., Wang, G., Zhao, J., Liu, X., Tian, F., Zhang, H., Chenb, W., 2013. Protective effects of Lactobacillus plantarum CCFM8610 against acute cadmium Environmental Microbiology 79(5): 1508 –1515.
  • Kinoshita, H., Ohtake, F., Arıga, Y., Kimura, K., 2016. Comparison and characterization of biosorption by Weissella viridescens MYU 205 of periodic group 12 metal ions. Animal Science Journal 87(2): 271-276.
  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30(12): 2725-2729.
  • İbrahim, F., Halttunen, T., Tahvonen, R., Salminen, S., 2006. Probiotic bacteria as a detoxification tools, assesing their heavy metal binding isotherms. Can Journal Microbiology 52(9): 877- 885.
  • Tian, F., Zhai, Q., Zhao, J., Liu, X., Wang, G., Zhang, H., Zhang, H., Chen, W., 2012. Lactobacillus plantarum CCFM8661 alleviates lead toxicity in mice. Biological Trace Element Research 150(1): 264–271.
  • Yu, L., Zhai, Q., Liu, X., Wang, G., Zhang, Q., Zhao, J., Narbad, A., Zhang, H., Tian, F., Chen, W., 2016. Lactobacillus plantarum CCFM639 alleviates Microbiology and Biotechnology 100: 1891–1900. toxicity. Applied of
  • Siezen, R.J., Francke, C., Renckens, B., Boekhorst, J., Wels, M., Kleerebezem, M., Van Hijum, S.A., 2012. Complete resequencing and reannotation of the Lactobacillus plantarum WCFS1 genome. Journal of Bacteriology 194(1): 195-196.

Bazı Fermente Gıdalardan İzole Edilen Lactobacillus plantarum Suşlarının Metal Dirençlilik Özellikleri

Yıl 2016, Cilt: 14 Sayı: 4, 393 - 397, 01.12.2016

Öz

Fermente gıdaların doğal mikroflorasını oluşturan laktik asit bakterileri LAB gıda üretiminde metal stresine maruz kalabilmektedir. Bu durum, LAB’lerin metabolik aktivitelerini olumsuz etkileyerek fermentasyonun duraklamasına neden olur. Bu çalışmada ekşi hamur, sucuk, beyaz peynir ve turşudan izole edilmiş ve tanımlanmış 43 adet Lactobacillus plantarum suşlarının Cu, Cd, Zn, Fe, Co, Al ve Cr metallerine karşı dirençlilik seviyeleri ve suşlarda dirençlilik genlerinin varlığı araştırılmıştır. L. plantarum suşları Fe ve Co’a karşı diğer metallerden daha fazla dirençlilik göstermiştir. Ayrıca L. plantarum PFC19, PFC22, PFC33 ve PFC36 suşlarının genomunda metal dirençlilikle ilişkili Cu-transport ATPaz, PFC7 ve PFC36 suşlarında ise Cd-transport-ATPaz genleri tespit edilmiştir. Bu sonuçlar, L.plantarum PFC7, PFC19, PFC22, PFC33 ve PFC36 suşlarının genetik temelli metal dirençlilik özelliklerinden dolayı olası metal stresine karşı fermente gıdalar için starter kültür olarak uygulama potansiyeli bulunduğunu göstermiştir

Kaynakça

  • Olaoye, O.A., Ntuen, I.G., 2011. Spoilage and preservation of meat: a general appraisal and potential of lactic acid bacteria as biological preservatives. International Research Journal of Biotechnology 2(1): 33-46.
  • Giller, K.E., Witter, E., McGrath, S., 1998. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biology and Biochemistry 30: 1389-1414.
  • Younan, S., Sakita, Z.G., Albuquerque, T.R., Keller, R., Bremer-Neto H., 2016. Chromium (VI) bioremediation by probiotics. Journal of the Science of Food and Agriculture 96: 3977-3982.
  • Berger, B., Pridmore, C., Barretto, F., Delmas- Julien, K., Schreiber, F., Brussow, H., 2007. Similarity and differences in the Lactobacillus acidophilus group identified by polyphasic analysis and comparative genomics. Journal of Bacteriology 189(4): 1311-1321.
  • van Kranenburg, R., Golic, N., Bongers, R., Leer, R.J., de Vos, W.M., Siezen, R.J., Kleerebezem, M., 2005. Functional analysis of three plasmids from Lactobacillus Environmental Microbiology 71(3): 1223-1230.
  • Halttunen, T., Salminen, S., Tahvonen, R., 2007. Rapid removal of lead and cadmium from water by specific lactic acid bacteria. International Journal of Food Microbiology 114(1): 30–35.
  • Mrvcic, J., Butorac, A., Solic, E., Stanzer, D., Bacun-Druzina, V., Cindric, M., Stehlik-Tomas, V., 2013. Characterization of Lactobacillus brevis L62 strain, highly tolerant to copper ions. World Journal of Microbiology and Biotechnology 29(1): 75-85.
  • Bhakta, J.N., Ohnishi, K., Munekage, Y., Iwasaki, K., Wei, M.Q., 2012. Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents. Journal of Applied Microbiology 112(6): 1193-1206.
  • Chang, Y.C., Choi, D., Kikuchi, S., 2012. Enhanced extraction of heavy metals in the two-step process with the mixed culture of Lactobacillus bulgaricus and Streptococcus thermophilus. Bioresource Technology 103(1): 477-480.
  • Schut, S., Zauner, S., Hampel, G., König, H., Claus, H., 2011. Biosorption of copper by wine- relevant lactobacilli. International Journal of Food Microbiology 145(1): 126-131.
  • Zhai, M., Wang, G., Zhao, J., Liu, X., Tian, F., Zhang, H., Chenb, W., 2013. Protective effects of Lactobacillus plantarum CCFM8610 against acute cadmium Environmental Microbiology 79(5): 1508 –1515.
  • Kinoshita, H., Ohtake, F., Arıga, Y., Kimura, K., 2016. Comparison and characterization of biosorption by Weissella viridescens MYU 205 of periodic group 12 metal ions. Animal Science Journal 87(2): 271-276.
  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30(12): 2725-2729.
  • İbrahim, F., Halttunen, T., Tahvonen, R., Salminen, S., 2006. Probiotic bacteria as a detoxification tools, assesing their heavy metal binding isotherms. Can Journal Microbiology 52(9): 877- 885.
  • Tian, F., Zhai, Q., Zhao, J., Liu, X., Wang, G., Zhang, H., Zhang, H., Chen, W., 2012. Lactobacillus plantarum CCFM8661 alleviates lead toxicity in mice. Biological Trace Element Research 150(1): 264–271.
  • Yu, L., Zhai, Q., Liu, X., Wang, G., Zhang, Q., Zhao, J., Narbad, A., Zhang, H., Tian, F., Chen, W., 2016. Lactobacillus plantarum CCFM639 alleviates Microbiology and Biotechnology 100: 1891–1900. toxicity. Applied of
  • Siezen, R.J., Francke, C., Renckens, B., Boekhorst, J., Wels, M., Kleerebezem, M., Van Hijum, S.A., 2012. Complete resequencing and reannotation of the Lactobacillus plantarum WCFS1 genome. Journal of Bacteriology 194(1): 195-196.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Burcu Özel Bu kişi benim

Halil İbrahim Kaya Bu kişi benim

Ömer Şimşek Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 14 Sayı: 4

Kaynak Göster

APA Özel, B., Kaya, H. İ., & Şimşek, Ö. (2016). Bazı Fermente Gıdalardan İzole Edilen Lactobacillus plantarum Suşlarının Metal Dirençlilik Özellikleri. Akademik Gıda, 14(4), 393-397.
AMA Özel B, Kaya Hİ, Şimşek Ö. Bazı Fermente Gıdalardan İzole Edilen Lactobacillus plantarum Suşlarının Metal Dirençlilik Özellikleri. Akademik Gıda. Aralık 2016;14(4):393-397.
Chicago Özel, Burcu, Halil İbrahim Kaya, ve Ömer Şimşek. “Bazı Fermente Gıdalardan İzole Edilen Lactobacillus Plantarum Suşlarının Metal Dirençlilik Özellikleri”. Akademik Gıda 14, sy. 4 (Aralık 2016): 393-97.
EndNote Özel B, Kaya Hİ, Şimşek Ö (01 Aralık 2016) Bazı Fermente Gıdalardan İzole Edilen Lactobacillus plantarum Suşlarının Metal Dirençlilik Özellikleri. Akademik Gıda 14 4 393–397.
IEEE B. Özel, H. İ. Kaya, ve Ö. Şimşek, “Bazı Fermente Gıdalardan İzole Edilen Lactobacillus plantarum Suşlarının Metal Dirençlilik Özellikleri”, Akademik Gıda, c. 14, sy. 4, ss. 393–397, 2016.
ISNAD Özel, Burcu vd. “Bazı Fermente Gıdalardan İzole Edilen Lactobacillus Plantarum Suşlarının Metal Dirençlilik Özellikleri”. Akademik Gıda 14/4 (Aralık 2016), 393-397.
JAMA Özel B, Kaya Hİ, Şimşek Ö. Bazı Fermente Gıdalardan İzole Edilen Lactobacillus plantarum Suşlarının Metal Dirençlilik Özellikleri. Akademik Gıda. 2016;14:393–397.
MLA Özel, Burcu vd. “Bazı Fermente Gıdalardan İzole Edilen Lactobacillus Plantarum Suşlarının Metal Dirençlilik Özellikleri”. Akademik Gıda, c. 14, sy. 4, 2016, ss. 393-7.
Vancouver Özel B, Kaya Hİ, Şimşek Ö. Bazı Fermente Gıdalardan İzole Edilen Lactobacillus plantarum Suşlarının Metal Dirençlilik Özellikleri. Akademik Gıda. 2016;14(4):393-7.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).