BibTex RIS Kaynak Göster

NaCl VE KCl TUZLARININ RHIZOPUS ORYZAE’NIN BÜYÜMESİNE VE LAKTİK ASİT ÜRETİMİNE ETKİSİ

Yıl 2016, Cilt: 41 Sayı: 5, 299 - 304, 01.10.2016

Öz

-

Kaynakça

  • Caplice E, and Fitzgeral GF. 1999. Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol, 50: 131-149.
  • Blandino A, Al-Aseeri ME, Pandiella SS, Cantero D, Webb C. 2003. Cereal-based fermented foods and beverages. Food Res Int, 36: 527-543.
  • Kader AA. 2011. Postharvest Technology of Horticultural Crops. 3rdEdition, University of California Division of Agriculture and Natural Resources, Richmond, California, USA. 535 p.
  • Sparringa RA, Kendall M, Westby A, Owens JA. 2002. Effects of temperature, pH, water activity and CO2 concentrtion on growth of Rhizopus oligosporus NRRL 2710. J Appl Microbiol, 92: 329-337.
  • Denter J, Rehm HJ, Bisping B. 1998. Changes in the contents of fat-soluble vitamins and provitamins during tempe fermentation. Int J Food Microbiol, 45: 129-134.
  • Zhou Y, Domínguez JM, Cao N, Du J, Tsao GT. 1999. Optimization of L-Lactic acid production from glucose by Rhizopus oryzae ATCC 52311. Appl Biochem Biotechnol, 77-79: 401-407.
  • Babu PD, Bhakyaraj R, Vildhyalakshmi R. 2009. A low cost nutritious food "tempeh" – A review., World J Dairy Food Sci, 4: 22-27.
  • Cantabrana I, Perise R, Hernandez I. 2015. Uses of Rhizopus oryzae in the kitchen. Int J Gastronomy Food Sci, 2: 103-111.
  • Jennessen J, Nielsen KF, Houbraken J, Lyhne EK, Schnürer J, Frisvad JC, Samson RA. 2005. Secondary metabolite and mycotoxin production by the Rhizopus microsporus group. J Agric Food Chem, 53: 1833-1840.
  • Varga J, Péteri Z, Tábori K, Téren J, Vágvölgyi C. 2005. Degradation of ochratoxin A and other mycotoxins. Int J Food Microbiol, 99: 321-328.
  • Azeke MA, Fretzdorff B, Buening-Pfaue H, Betsche T. 2007. Comparative effect of boiling and solid substrate fermentation using the tempeh fungus (Rhizopus oligosporus) on the flatulence potential of African yambean (Sphenostylis stenocarpa L.) seeds. Food Chem, 103: 1420-1425.
  • Bai DM, Jia MZ, Zhao XM, Ban R, Shen F, Li XG, Xu SM. 2003. L (+)-lactic acid production by pellet-form Rhizopus oryzae R1021 in a stirred tank fermentor. Chem Eng Sci, 58: 785-791.
  • Byrne GS, Ward OP. 1989. Effect of nutrition on pellet formation by Rhizopus arrhizus. Biotechnol Bioeng, 33: 912-914.
  • Fu YQ, Yin LF, Zhu HY, Jiang R, Li S, Xu Q. 2014. Effects of pellet characteristics on L-Lactic acid fermentation by R. oryzae: Pellet morphology, diameter, density, and interior structure. Appl Biochem Biotechnol, 174: 2019-2030.
  • Tarı C, Özkan K, Oncu Ş, Avcı T. 2011. The relationship of pellet morphology to polygalacturonase production of Rhizopus oryzae in various media compositions. Gıda, 36 (1): 25-31. 16. Blomberg A. 2000. Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol Lett, 182: 1-8
  • Kuncic MK, Kogej T, Drobne D, Gunde- Cimerman N. 2010. Morphological response of the halophilic fungal genus Wallemia to high salinity. Appl Environ Microbiol, 76 (1): 329-337. 18. Plemenitas A, Lenassi M, Konte T, Kejzar A, Zajc J, Gostincar C, Gunde-Cimerman N. 2014. Adaptation to high salt concentrations in halotolerant/ halophilic fungi: a molecular perspective. Front Microbiol, 5: 1-12.
  • Uyar EO, Hamamcı H, Turkel S. 2010. Effect of different stresses on trehalose levels in Rhizopus oryzae. J Basic Microbiol, 50: 368-372.
  • Bulut S, Elibol M, Ozer D. 2004. Effect of different carbon sources on L(+) -lactic acid production by Rhizopus oryzae. Biochem Eng J, 2: 33-37
  • Büyükkileci AO, Hamamcı H, Yücel M. 2006. Lactate and ethanol productions by Rhizopus oryzae ATCC 9363 and activities of related pyruvate branch point enzymes. J Biosci Bioeng, 102: 464-466. 22. Skory CD, Freer SN, Bothast RJ. 1998. Production of L-lactic acid by Rhizopus oryzae under oxygen limiting conditions. Biotechnol Lett, 20: 191-194.
  • Yin P, Nishina N, Kosakai Y, Yahiro K, Park Y, Okabe M. 1997. Enhanced production of L(+)- Lactic acid from corn starch in a culture of Rhizopus oryzae using an air-lift bioreactor. J Ferment Bioeng, 84: 249-253.
  • Wu X, Jiang S, Liu M, Pan L, Zheng Z, Luo S. 2011. Production of L-lactic acid by Rhizopus oryzae using semicontinuous fermentation in bioreactor. J Ind Microbiol Biotechnol, 38:565-571.

EFFECT OF NaCl AND KCl SALTS ON GROWTH AND LACTIC ACID PRODUCTION OF RHIZOPUS ORYZAE

Yıl 2016, Cilt: 41 Sayı: 5, 299 - 304, 01.10.2016

Öz

Rhizopus group organisms produce a variety of fermented foods and industrial products includingenzymes, organic acids, lipid derivatives, pesticides, herbicides, antibiotics. Some strains of Rhizopusare good lactic acid producers, with many advantages over lactic acid producing bacteria. Lactic acidhas a wide range of application in food processing industry. In this study, growth and lactic acidproduction of Rhizopus oryzae in response to different NaCl and KCl concentrations in the culture wereinvestigated. The growth and lactic acid production depended on the salt concentration, they decreasedas the salt concentration increased. The type of salt did not result in significant differences in terms ofgrowth and lactic acid production

Kaynakça

  • Caplice E, and Fitzgeral GF. 1999. Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol, 50: 131-149.
  • Blandino A, Al-Aseeri ME, Pandiella SS, Cantero D, Webb C. 2003. Cereal-based fermented foods and beverages. Food Res Int, 36: 527-543.
  • Kader AA. 2011. Postharvest Technology of Horticultural Crops. 3rdEdition, University of California Division of Agriculture and Natural Resources, Richmond, California, USA. 535 p.
  • Sparringa RA, Kendall M, Westby A, Owens JA. 2002. Effects of temperature, pH, water activity and CO2 concentrtion on growth of Rhizopus oligosporus NRRL 2710. J Appl Microbiol, 92: 329-337.
  • Denter J, Rehm HJ, Bisping B. 1998. Changes in the contents of fat-soluble vitamins and provitamins during tempe fermentation. Int J Food Microbiol, 45: 129-134.
  • Zhou Y, Domínguez JM, Cao N, Du J, Tsao GT. 1999. Optimization of L-Lactic acid production from glucose by Rhizopus oryzae ATCC 52311. Appl Biochem Biotechnol, 77-79: 401-407.
  • Babu PD, Bhakyaraj R, Vildhyalakshmi R. 2009. A low cost nutritious food "tempeh" – A review., World J Dairy Food Sci, 4: 22-27.
  • Cantabrana I, Perise R, Hernandez I. 2015. Uses of Rhizopus oryzae in the kitchen. Int J Gastronomy Food Sci, 2: 103-111.
  • Jennessen J, Nielsen KF, Houbraken J, Lyhne EK, Schnürer J, Frisvad JC, Samson RA. 2005. Secondary metabolite and mycotoxin production by the Rhizopus microsporus group. J Agric Food Chem, 53: 1833-1840.
  • Varga J, Péteri Z, Tábori K, Téren J, Vágvölgyi C. 2005. Degradation of ochratoxin A and other mycotoxins. Int J Food Microbiol, 99: 321-328.
  • Azeke MA, Fretzdorff B, Buening-Pfaue H, Betsche T. 2007. Comparative effect of boiling and solid substrate fermentation using the tempeh fungus (Rhizopus oligosporus) on the flatulence potential of African yambean (Sphenostylis stenocarpa L.) seeds. Food Chem, 103: 1420-1425.
  • Bai DM, Jia MZ, Zhao XM, Ban R, Shen F, Li XG, Xu SM. 2003. L (+)-lactic acid production by pellet-form Rhizopus oryzae R1021 in a stirred tank fermentor. Chem Eng Sci, 58: 785-791.
  • Byrne GS, Ward OP. 1989. Effect of nutrition on pellet formation by Rhizopus arrhizus. Biotechnol Bioeng, 33: 912-914.
  • Fu YQ, Yin LF, Zhu HY, Jiang R, Li S, Xu Q. 2014. Effects of pellet characteristics on L-Lactic acid fermentation by R. oryzae: Pellet morphology, diameter, density, and interior structure. Appl Biochem Biotechnol, 174: 2019-2030.
  • Tarı C, Özkan K, Oncu Ş, Avcı T. 2011. The relationship of pellet morphology to polygalacturonase production of Rhizopus oryzae in various media compositions. Gıda, 36 (1): 25-31. 16. Blomberg A. 2000. Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol Lett, 182: 1-8
  • Kuncic MK, Kogej T, Drobne D, Gunde- Cimerman N. 2010. Morphological response of the halophilic fungal genus Wallemia to high salinity. Appl Environ Microbiol, 76 (1): 329-337. 18. Plemenitas A, Lenassi M, Konte T, Kejzar A, Zajc J, Gostincar C, Gunde-Cimerman N. 2014. Adaptation to high salt concentrations in halotolerant/ halophilic fungi: a molecular perspective. Front Microbiol, 5: 1-12.
  • Uyar EO, Hamamcı H, Turkel S. 2010. Effect of different stresses on trehalose levels in Rhizopus oryzae. J Basic Microbiol, 50: 368-372.
  • Bulut S, Elibol M, Ozer D. 2004. Effect of different carbon sources on L(+) -lactic acid production by Rhizopus oryzae. Biochem Eng J, 2: 33-37
  • Büyükkileci AO, Hamamcı H, Yücel M. 2006. Lactate and ethanol productions by Rhizopus oryzae ATCC 9363 and activities of related pyruvate branch point enzymes. J Biosci Bioeng, 102: 464-466. 22. Skory CD, Freer SN, Bothast RJ. 1998. Production of L-lactic acid by Rhizopus oryzae under oxygen limiting conditions. Biotechnol Lett, 20: 191-194.
  • Yin P, Nishina N, Kosakai Y, Yahiro K, Park Y, Okabe M. 1997. Enhanced production of L(+)- Lactic acid from corn starch in a culture of Rhizopus oryzae using an air-lift bioreactor. J Ferment Bioeng, 84: 249-253.
  • Wu X, Jiang S, Liu M, Pan L, Zheng Z, Luo S. 2011. Production of L-lactic acid by Rhizopus oryzae using semicontinuous fermentation in bioreactor. J Ind Microbiol Biotechnol, 38:565-571.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA66UP55CT
Bölüm Araştırma Makalesi
Yazarlar

Gülsüm Ebru Özer Uyar Bu kişi benim

Başar Uyar Bu kişi benim

Yayımlanma Tarihi 1 Ekim 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 41 Sayı: 5

Kaynak Göster

APA Uyar, G. E. Ö., & Uyar, B. (2016). NaCl VE KCl TUZLARININ RHIZOPUS ORYZAE’NIN BÜYÜMESİNE VE LAKTİK ASİT ÜRETİMİNE ETKİSİ. Gıda, 41(5), 299-304.
AMA Uyar GEÖ, Uyar B. NaCl VE KCl TUZLARININ RHIZOPUS ORYZAE’NIN BÜYÜMESİNE VE LAKTİK ASİT ÜRETİMİNE ETKİSİ. GIDA. Ekim 2016;41(5):299-304.
Chicago Uyar, Gülsüm Ebru Özer, ve Başar Uyar. “NaCl VE KCl TUZLARININ RHIZOPUS ORYZAE’NIN BÜYÜMESİNE VE LAKTİK ASİT ÜRETİMİNE ETKİSİ”. Gıda 41, sy. 5 (Ekim 2016): 299-304.
EndNote Uyar GEÖ, Uyar B (01 Ekim 2016) NaCl VE KCl TUZLARININ RHIZOPUS ORYZAE’NIN BÜYÜMESİNE VE LAKTİK ASİT ÜRETİMİNE ETKİSİ. Gıda 41 5 299–304.
IEEE G. E. Ö. Uyar ve B. Uyar, “NaCl VE KCl TUZLARININ RHIZOPUS ORYZAE’NIN BÜYÜMESİNE VE LAKTİK ASİT ÜRETİMİNE ETKİSİ”, GIDA, c. 41, sy. 5, ss. 299–304, 2016.
ISNAD Uyar, Gülsüm Ebru Özer - Uyar, Başar. “NaCl VE KCl TUZLARININ RHIZOPUS ORYZAE’NIN BÜYÜMESİNE VE LAKTİK ASİT ÜRETİMİNE ETKİSİ”. Gıda 41/5 (Ekim 2016), 299-304.
JAMA Uyar GEÖ, Uyar B. NaCl VE KCl TUZLARININ RHIZOPUS ORYZAE’NIN BÜYÜMESİNE VE LAKTİK ASİT ÜRETİMİNE ETKİSİ. GIDA. 2016;41:299–304.
MLA Uyar, Gülsüm Ebru Özer ve Başar Uyar. “NaCl VE KCl TUZLARININ RHIZOPUS ORYZAE’NIN BÜYÜMESİNE VE LAKTİK ASİT ÜRETİMİNE ETKİSİ”. Gıda, c. 41, sy. 5, 2016, ss. 299-04.
Vancouver Uyar GEÖ, Uyar B. NaCl VE KCl TUZLARININ RHIZOPUS ORYZAE’NIN BÜYÜMESİNE VE LAKTİK ASİT ÜRETİMİNE ETKİSİ. GIDA. 2016;41(5):299-304.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/