Araştırma Makalesi
BibTex RIS Kaynak Göster

DEVELOPING A NEW ESTERIFICATION METHOD FOR THE DETERMINATION OF FATTY ACID COMPOSITIONS OF MARINE OIL SUPPLEMENTS BY GAS CHROMATOGRAPHY WITH ORTHOGONAL CENTRAL COMPOSITE DESIGN AND RESPONSE SURFACE METHODOLOGY

Yıl 2020, Cilt: 45 Sayı: 3, 581 - 589, 15.06.2020
https://doi.org/10.15237/gida.GD20043

Öz

In this study, an efficient, applicable, and special esterification method for the quantification of fatty acid compositions of MOs has been created with chemometric techniques. The esterification variables which are the temperature of esterification (A), the time of esterification (B), and the amount of hexane (C), were optimized by using the orthogonal central composite design (OCCD). The relationships of the variables with each other and with the response value (R) are interpreted with response surface methodology (RSM). The optimal conditions were as follows: the temperature of esterification, 60°C; the time of esterification, 40 min; and the amount of hexane, 4.3 mL. Even MOs that are difficult to esterify can be easily esterified and the fatty acid compositions of all MOs, especially important fatty acids such as eicosapentaenoic acid (20:5) and docosahexaenoic acid (22:6), have been successfully analyzed by gas chromatography with the new method developed.

Destekleyen Kurum

Selçuk University

Proje Numarası

19401049

Teşekkür

The author wants to thank the Scientific Research Projects Foundation of Selçuk University (SUBAP-Grant Number 19401049) for the financial support of this work. The author also would like to thank Büşra Allak and Hatice Bulut, who are undergraduate students in the Biochemistry Department, for their helps during the studies.

Kaynakça

  • AOCS (2017). Fatty Acids in Edible Oils and Fats by Capillary GLC vol Ce 1a-13. American Oil Chemists' Society, USA.
  • Arslan, F.N., Kara, H., Ayyildiz, H.F., Topkafa, M., Tarhan, I., Kenar, A. (2013). A Chemometric Approach to Assess the Frying Stability of Cottonseed Oil Blends During Deep-Frying Process: I. Polar and Polymeric Compound Analyses. Journal of the American Oil Chemists' Society 90:1179-1193, doi:10.1007/s11746-013-2266-4.
  • Ayyildiz, H.F., Topkafa, M., Kara, H., Sherazi, S.T.H. (2015). Evaluation of Fatty Acid Composition, Tocols Profile, and Oxidative Stability of Some Fully Refined Edible Oils. Int J Food Prop 18:2064-2076, doi:10.1080/10942912.2014.962657.
  • Barceló-Coblijn, G., Murphy, E.J. (2009). Alpha-linolenic acid and its conversion to longer chain n−3 fatty acids: Benefits for human health and a role in maintaining tissue n−3 fatty acid levels. Progress in Lipid Research 48:355-374, doi:https://doi.org/10.1016/j.plipres.2009.07.002.
  • Burdge, G.C., Calder, P.C. (2005). Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod Nutr Dev 45:581-597.
  • Chang, G., Gao, N., Tian, G., Wu, Q., Chang, M., Wang, X. (2013). Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. S31 with constantly high oxygen transfer coefficient. Bioresource Technology 142:400-406, doi:https://doi.org/10.1016/j.biortech.2013.04.107.
  • Li, J. et al. (2015). A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. Bioresource Technology 177:51-57, doi:https://doi.org/10.1016/j.biortech.2014.11.046.
  • Marchioli, R. et al. (2002). Early Protection Against Sudden Death by n-3 Polyunsaturated Fatty Acids After Myocardial Infarction. Circulation 105:1897-1903, doi:doi:10.1161/01.CIR.0000014682.14181.F2.
  • Mata, A., Liu, S., Sjöberg, M., Zetterström, R., Griffiths, W., Sjövall, J., Perlmann, T. (2001). Docosahexaenoic Acid, a Ligand for the Retinoid X Receptor in Mouse Brain. Science (New York, NY) 290:2140-2144, doi:10.1126/science.290.5000.2140.
  • Memon, F.N. et al. (2015). Application of central composite design for the optimization of on-line solid phase extraction of Cu2+ by calix[4]arene bonded silica resin. Chemometrics and Intelligent Laboratory Systems 146:158-168, doi:https://doi.org/10.1016/j.chemolab.2015.05.020.
  • Mozaffarian, D., Rimm, E.B. (2006). Fish Intake, Contaminants, and Human HealthEvaluating the Risks and the Benefits. JAMA 296:1885-1899, doi:10.1001/jama.296.15.1885.
  • Niemoller, T.D., Bazan, N.G. (2010). Docosahexaenoic acid neurolipidomics. Prostaglandins & Other Lipid Mediators 91:85-89, doi:https://doi.org/10.1016/j.prostaglandins.2009.09.005.
  • Olgunoglu, İ. (2017). Review on Omega-3 (n-3) Fatty Acids in Fish and Seafood. Journal of Biology, Agriculture and Healthcare 7:37-45,
  • SanGiovanni, J.P., Chew, E.Y. (2005). The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Progress in Retinal and Eye Research 24:87-138, doi:https://doi.org/10.1016/j.preteyeres.2004.06.002.
  • Tarhan, İ., Ismail, A.A., Kara, H. (2017). Quantitative determination of free fatty acids in extra virgin olive oils by multivariate methods and Fourier transform infrared spectroscopy considering different absorption modes. Int J Food Prop 20:S790-S797, doi:10.1080/10942912.2017.1312437.
  • Tarhan, İ., Kara, H. (2016). A chemometric study: Automated flow injection analysis method for the quantitative determination of humic acid in Ilgın lignite. Arabian Journal of Chemistry 9:713-720, doi:https://doi.org/10.1016/j.arabjc.2014.09.002.
  • Tarhan, İ., Kara, H. (2019). A new HPLC method for simultaneous analysis of sterols, tocopherols, tocotrienols, and squalene in olive oil deodorizer distillates using a monolithic column with chemometric techniques. Anal Methods 11:4681-4692, doi:10.1039/C9AY01525F.
  • Topkafa, M. (2016). Evaluation of chemical properties of cold pressed onion, okra, rosehip, safflower and carrot seed oils: triglyceride, fatty acid and tocol compositions. Anal Methods 8:4220-4225, doi:10.1039/c6ay00709k.
  • Wang, J., Reyes Suárez, E., Kralovec, J., Shahidi, F. (2010). Effect of Chemical Randomization on Positional Distribution and Stability of Omega-3 Oil Triacylglycerols. Journal of Agricultural and Food Chemistry 58:8842-8847, doi:10.1021/jf101582u.

ORTAGONAL MERKEZİ KOMPOZİT TASARIM VE YÜZEY CEVAP METODOLOJİSİNDEN FAYDALANARAK BALIK YAĞI GIDA TAKVİYELERİNİN YAĞ ASİDİ KOMPOZİSYONLARININ GAZ KROMATOGRAFİSİ İLE TAYİNİ İÇİN YENİ BİR ESTERLEŞTİRME METODUNUN GELİŞTİRİLMESİ

Yıl 2020, Cilt: 45 Sayı: 3, 581 - 589, 15.06.2020
https://doi.org/10.15237/gida.GD20043

Öz

Bu çalışmada kemometrik tekniklerden faydalanılarak MO'ların yağ asidi kompozisyonlarının tayini için etkili, uygulanabilir ve özel bir esterleştirme yöntemi geliştirilmiştir. Esterifikasyon parametrelerinden esterleşme sıcaklığı (A), esterleşme süresi (B) ve hekzan miktarı (C) ortagonal merkezi kompozit tasarım (OCCD) kullanılarak optimize edilmişlerdir. İlgili parametrelerin birbirleriyle ve cevap değeri (R) ile ilişkileri cevap yüzey metodolojisinden (RSM) faydalanılarak yorumlanmıştır. İlgili parametrelerin tespit edilen optimum değerleri esterleşme sıcaklığı için 60°C, esterleşme süresi için 40 dakika ve hekzan miktarı için 4.3 mL olarak tespit edilmiştir. Gaz kromatografisi ve geliştirilen yeni metot ile esterleştirilmesi kolay olmayan MO numuneleri kolaylıkla esterleştirilebilmiş ve başta eikosapentanoik asit (20:5) ve dokosahekzaenoik asit (22:6) olmak üzere tüm önemli yağ asitleri analiz edilebilmiştir

Proje Numarası

19401049

Kaynakça

  • AOCS (2017). Fatty Acids in Edible Oils and Fats by Capillary GLC vol Ce 1a-13. American Oil Chemists' Society, USA.
  • Arslan, F.N., Kara, H., Ayyildiz, H.F., Topkafa, M., Tarhan, I., Kenar, A. (2013). A Chemometric Approach to Assess the Frying Stability of Cottonseed Oil Blends During Deep-Frying Process: I. Polar and Polymeric Compound Analyses. Journal of the American Oil Chemists' Society 90:1179-1193, doi:10.1007/s11746-013-2266-4.
  • Ayyildiz, H.F., Topkafa, M., Kara, H., Sherazi, S.T.H. (2015). Evaluation of Fatty Acid Composition, Tocols Profile, and Oxidative Stability of Some Fully Refined Edible Oils. Int J Food Prop 18:2064-2076, doi:10.1080/10942912.2014.962657.
  • Barceló-Coblijn, G., Murphy, E.J. (2009). Alpha-linolenic acid and its conversion to longer chain n−3 fatty acids: Benefits for human health and a role in maintaining tissue n−3 fatty acid levels. Progress in Lipid Research 48:355-374, doi:https://doi.org/10.1016/j.plipres.2009.07.002.
  • Burdge, G.C., Calder, P.C. (2005). Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod Nutr Dev 45:581-597.
  • Chang, G., Gao, N., Tian, G., Wu, Q., Chang, M., Wang, X. (2013). Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. S31 with constantly high oxygen transfer coefficient. Bioresource Technology 142:400-406, doi:https://doi.org/10.1016/j.biortech.2013.04.107.
  • Li, J. et al. (2015). A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. Bioresource Technology 177:51-57, doi:https://doi.org/10.1016/j.biortech.2014.11.046.
  • Marchioli, R. et al. (2002). Early Protection Against Sudden Death by n-3 Polyunsaturated Fatty Acids After Myocardial Infarction. Circulation 105:1897-1903, doi:doi:10.1161/01.CIR.0000014682.14181.F2.
  • Mata, A., Liu, S., Sjöberg, M., Zetterström, R., Griffiths, W., Sjövall, J., Perlmann, T. (2001). Docosahexaenoic Acid, a Ligand for the Retinoid X Receptor in Mouse Brain. Science (New York, NY) 290:2140-2144, doi:10.1126/science.290.5000.2140.
  • Memon, F.N. et al. (2015). Application of central composite design for the optimization of on-line solid phase extraction of Cu2+ by calix[4]arene bonded silica resin. Chemometrics and Intelligent Laboratory Systems 146:158-168, doi:https://doi.org/10.1016/j.chemolab.2015.05.020.
  • Mozaffarian, D., Rimm, E.B. (2006). Fish Intake, Contaminants, and Human HealthEvaluating the Risks and the Benefits. JAMA 296:1885-1899, doi:10.1001/jama.296.15.1885.
  • Niemoller, T.D., Bazan, N.G. (2010). Docosahexaenoic acid neurolipidomics. Prostaglandins & Other Lipid Mediators 91:85-89, doi:https://doi.org/10.1016/j.prostaglandins.2009.09.005.
  • Olgunoglu, İ. (2017). Review on Omega-3 (n-3) Fatty Acids in Fish and Seafood. Journal of Biology, Agriculture and Healthcare 7:37-45,
  • SanGiovanni, J.P., Chew, E.Y. (2005). The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Progress in Retinal and Eye Research 24:87-138, doi:https://doi.org/10.1016/j.preteyeres.2004.06.002.
  • Tarhan, İ., Ismail, A.A., Kara, H. (2017). Quantitative determination of free fatty acids in extra virgin olive oils by multivariate methods and Fourier transform infrared spectroscopy considering different absorption modes. Int J Food Prop 20:S790-S797, doi:10.1080/10942912.2017.1312437.
  • Tarhan, İ., Kara, H. (2016). A chemometric study: Automated flow injection analysis method for the quantitative determination of humic acid in Ilgın lignite. Arabian Journal of Chemistry 9:713-720, doi:https://doi.org/10.1016/j.arabjc.2014.09.002.
  • Tarhan, İ., Kara, H. (2019). A new HPLC method for simultaneous analysis of sterols, tocopherols, tocotrienols, and squalene in olive oil deodorizer distillates using a monolithic column with chemometric techniques. Anal Methods 11:4681-4692, doi:10.1039/C9AY01525F.
  • Topkafa, M. (2016). Evaluation of chemical properties of cold pressed onion, okra, rosehip, safflower and carrot seed oils: triglyceride, fatty acid and tocol compositions. Anal Methods 8:4220-4225, doi:10.1039/c6ay00709k.
  • Wang, J., Reyes Suárez, E., Kralovec, J., Shahidi, F. (2010). Effect of Chemical Randomization on Positional Distribution and Stability of Omega-3 Oil Triacylglycerols. Journal of Agricultural and Food Chemistry 58:8842-8847, doi:10.1021/jf101582u.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

İsmail Tarhan 0000-0003-3353-8635

Proje Numarası 19401049
Yayımlanma Tarihi 15 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 45 Sayı: 3

Kaynak Göster

APA Tarhan, İ. (2020). DEVELOPING A NEW ESTERIFICATION METHOD FOR THE DETERMINATION OF FATTY ACID COMPOSITIONS OF MARINE OIL SUPPLEMENTS BY GAS CHROMATOGRAPHY WITH ORTHOGONAL CENTRAL COMPOSITE DESIGN AND RESPONSE SURFACE METHODOLOGY. Gıda, 45(3), 581-589. https://doi.org/10.15237/gida.GD20043
AMA Tarhan İ. DEVELOPING A NEW ESTERIFICATION METHOD FOR THE DETERMINATION OF FATTY ACID COMPOSITIONS OF MARINE OIL SUPPLEMENTS BY GAS CHROMATOGRAPHY WITH ORTHOGONAL CENTRAL COMPOSITE DESIGN AND RESPONSE SURFACE METHODOLOGY. GIDA. Haziran 2020;45(3):581-589. doi:10.15237/gida.GD20043
Chicago Tarhan, İsmail. “DEVELOPING A NEW ESTERIFICATION METHOD FOR THE DETERMINATION OF FATTY ACID COMPOSITIONS OF MARINE OIL SUPPLEMENTS BY GAS CHROMATOGRAPHY WITH ORTHOGONAL CENTRAL COMPOSITE DESIGN AND RESPONSE SURFACE METHODOLOGY”. Gıda 45, sy. 3 (Haziran 2020): 581-89. https://doi.org/10.15237/gida.GD20043.
EndNote Tarhan İ (01 Haziran 2020) DEVELOPING A NEW ESTERIFICATION METHOD FOR THE DETERMINATION OF FATTY ACID COMPOSITIONS OF MARINE OIL SUPPLEMENTS BY GAS CHROMATOGRAPHY WITH ORTHOGONAL CENTRAL COMPOSITE DESIGN AND RESPONSE SURFACE METHODOLOGY. Gıda 45 3 581–589.
IEEE İ. Tarhan, “DEVELOPING A NEW ESTERIFICATION METHOD FOR THE DETERMINATION OF FATTY ACID COMPOSITIONS OF MARINE OIL SUPPLEMENTS BY GAS CHROMATOGRAPHY WITH ORTHOGONAL CENTRAL COMPOSITE DESIGN AND RESPONSE SURFACE METHODOLOGY”, GIDA, c. 45, sy. 3, ss. 581–589, 2020, doi: 10.15237/gida.GD20043.
ISNAD Tarhan, İsmail. “DEVELOPING A NEW ESTERIFICATION METHOD FOR THE DETERMINATION OF FATTY ACID COMPOSITIONS OF MARINE OIL SUPPLEMENTS BY GAS CHROMATOGRAPHY WITH ORTHOGONAL CENTRAL COMPOSITE DESIGN AND RESPONSE SURFACE METHODOLOGY”. Gıda 45/3 (Haziran 2020), 581-589. https://doi.org/10.15237/gida.GD20043.
JAMA Tarhan İ. DEVELOPING A NEW ESTERIFICATION METHOD FOR THE DETERMINATION OF FATTY ACID COMPOSITIONS OF MARINE OIL SUPPLEMENTS BY GAS CHROMATOGRAPHY WITH ORTHOGONAL CENTRAL COMPOSITE DESIGN AND RESPONSE SURFACE METHODOLOGY. GIDA. 2020;45:581–589.
MLA Tarhan, İsmail. “DEVELOPING A NEW ESTERIFICATION METHOD FOR THE DETERMINATION OF FATTY ACID COMPOSITIONS OF MARINE OIL SUPPLEMENTS BY GAS CHROMATOGRAPHY WITH ORTHOGONAL CENTRAL COMPOSITE DESIGN AND RESPONSE SURFACE METHODOLOGY”. Gıda, c. 45, sy. 3, 2020, ss. 581-9, doi:10.15237/gida.GD20043.
Vancouver Tarhan İ. DEVELOPING A NEW ESTERIFICATION METHOD FOR THE DETERMINATION OF FATTY ACID COMPOSITIONS OF MARINE OIL SUPPLEMENTS BY GAS CHROMATOGRAPHY WITH ORTHOGONAL CENTRAL COMPOSITE DESIGN AND RESPONSE SURFACE METHODOLOGY. GIDA. 2020;45(3):581-9.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/