Araştırma Makalesi
BibTex RIS Kaynak Göster

Origami ile Matematik Dersi Süresince İlköğretim Matematik Öğretmeni Adaylarının Van Hiele Geometrik Düşünme Düzeyleri ile Origami İnançları Arasındaki İlişkinin Belirlenmesi

Yıl 2017, Cilt: 1 Sayı: 1, 24 - 35, 29.12.2017

Öz

Bu çalışmada, ilköğretim matematik öğretmen adaylarının origaminin
matematik eğitiminde kullanılmasına yönelik inançlarını ve Van Hiele Geometri
Düşünme Düzeylerini belirleyerek, inançları ve düzeyleri arasındaki ilişkiyi ve
bu ilişkide seçimlik ders olarak aldıkları Origami ile Matematik dersi
sonrasındaki değişimleri belirlemek hedeflenmiştir. Tek gruplu öntest-sontest
deneysel desen ile yürütülen bu açalışmanın çalışma grubunu, 2015-2016 eğitim
öğretim yılı bahar döneminde, Sakarya Üniversitesi Eğitim Fakültesi İlköğretim
Matematik Öğretmenliği Programı’nda okuyan Origami ile Matematik dersini alan 64
ilköğretim matematik öğretmen adayı oluşturmaktadır. Çalışmanın verileri “Van
Hiele Geometrik Düşünme Testi” ve “Origami İnanç Ölçeği” ile toplanmıştır.
Çalışmadan elde edilen veriler, SPSS 20.0 yardımıyla analiz edilerek ortalama,
standart sapma, frekans, yüzde, tek faktörlü varyans analizi ve bağımlı
örneklemler için t-testi kullanılarak analiz edilmiştir. Veri analizleri
sonucunda, öğretmen adaylarının ön test ve son test sonuçlarına göre Van Hiele
Geometrik Düşünme Düzeylerinde ve origaminin matematik eğitiminde kullanımına
yönelik faydalılık inançlarında artışların olduğu; origaminin matematik
eğitiminde kullanımına yönelik sınırlılık inançlarında da azalmanın olduğu
görülmüştür. Çalışmanın sonunda, seçimlik Matematik ile Origami dersinin,
ilköğretim matematik öğretmeni adaylarının Van Hiele Geometri Düşünme Düzeyleri
ile geometri başarıları arasındaki ilişki dikkate alındığında, matematik
eğitimi ve öğretmen eğitimi açısından yaygınlaştırılabileceği ve değerlendirilebileceği
sonucuna ulaşılmıştır

Kaynakça

  • Arslan, O., & Işıksal_Bostan, M. (2016). Turkish prospective middle school mathematics teachers’ beliefs and perceived self-efficacy beliefs regarding the use of origami in mathematics education. Eurasia Journal of Mathematics, Science & Technology Education, 12(6), 1533-1548.
  • Boakes, N. (2009). Origami instruction in the middle school mathematics classroom: Its impact on spatial visualization and geometry knowledge of students. Research in Middle Level Education Online, 32(7), 1-12.
  • Choi-Koh, S. S. (1999). A student’s learning of geometry using the computer. Journal of Educational Research, 92(5), 301-311.
  • Duatepe, A. (2000). An investigation of the relationship between Van Hiele geometric level of thinking and demographic variables for pre-service elementary school teachers. Yayımlanmamış yüksek lisans tezi. ODTÜ. Ankara
  • Creswell, J. W. (1998). Qualitative inquiry and research design: Choosing among five designs. Thousand Oaks, CA: Sage.
  • Duatepe-Paksu, A. (2016). Van Hiele Geometrik Düşünme Düzeyleri. Bingölbali,E., Arslan, S., & Zembat, İ. Ö. (Edt). Matematik Eğitiminde Teoriler. Sf.266-275. Pegem Akademi. Ankara.
  • Ergene, Ö., Masal, M., Masal, E., & Takunyacı, M. (2017). Investigating prospective elementary mathematics teachers’ skills of relating origami to topics in mathematics curriculum. International Journal of Human Sciences, 14(4), 3780-3792. doi : 10.14687/jhs.v14i4.4965
  • Fraenkel, J., Wallen, N., & Hyun, H. (2011). How to design and evaluate research in education. New York: The McGraw-Hill.
  • Georgeson, J. (2011). Fold in origami and unfold math. Mathematics Teaching in Middle School, 16(6),354-361.
  • Halat, E. (2008). Pre-service elementary school and secondary mathematics teachers’ Van Hiele levels and gender differences. IUMPST: The Journal. Vol 1 (Content Knowledge), May 2008
  • Knight, K. C. (2006). An investigation into the change in the Van Hiele levels of understanding geometry of pre-service elementary and secondary mathematics teachers. Master thesis. The University of Maine, Lincoln.
  • Meng, C. C., & Sam, L. C. (2009). Assessing pre-service secondary mathematics teachers’ geometric thinking. Asian Mathematical Conference, Malaysia 2009.Mullis, I. V. S., Martin, M. O., Foy, P., & Arora, A. (2012). TIMSS 2011 International results in mathematics. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
  • MEB (2017). İlköğretim Matematik Dersi 5–8 Öğretim Programı. Talim Terbiye Kurulu Başkanlığı, Ankara.
  • NCTM. (2000). Principles and standards for school mathematics. Reston, VA: NCTM Publications.
  • Napitupulu, B. (2001). An exploration of students’ understanding and Van Hieles of thinking on geometric constructions (Unpublished master thesis). Simon Fraser University, Canada.
  • Olkun, S. (2002). Sınıf Öğretmenliği ve Matematik Öğretmenliği Öğrencilerinin Geometrik Düşünme Düzeyleri, V. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi Bildiri Özetleri 16-18 Eylül 2002. Ankara: ODTÜ Kültür ve Kongre Merkezi.
  • Patton, M. Q. (1990). How to use qualitative methods in evaluation. London: Sagem Publications, 80-87.
  • Pope, S., (2002). The use of origami in the teaching of geometry. Proceedings of the British Society for Research into Learning Mathematics, 22(3), 67-73.
  • Sarı, M., Arıkan, S., & Yıldızlı, H. (2017). 8. sınıf matematik akademik başarısını yordayan faktörler- TIMSS 2015. Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi, 8(3), 246-265. doi: 10.21031/epod.303689
  • Şahin, O. (2006). Sınıf öğretmenlerinin ve sınıf öğretmeni adaylarının Van Hiele geometrik düşünme düzeyleri. Yayınlanmamış yüksek lisans tezi, Afyon Kocatepe Üniversitesi, Afyon
  • Taş, U. E., Arıcı, Ö., Ozarkan, H. B., & Özgürlük, B. (2016). PISA 2015 Ulusal Raporu. Ankara: MEB.
  • Wares, A. (2011). Using origami boxes to explore concepts of geometry and calculus. International Journal of Mathematical Education in Science and Technology, 42(2), 264-272.
  • Wille, A. M., & Boquet, M. (2009). Imaginary dialogues written by low-achieving students about origami: A case study. In Tzekaki, M. Kaldrimidou, M. & Sakonidis, H. (Eds.) Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education, Vol. 5, pp. 337-344. Thessaloniki, Greece: PMEUsiskin, Z. (1982). Van Hiele Levels of Achievement in Secondary School Geometry. (University of Chicago, Sponsor Agency: National Inst. of Education). Springfield, Virginia: Dyntel Corporation.
  • Yavuz, H. Ç., Demirtaşlı, R. N., Yalçın, S., & İlgün Dibek, M. (2017). The effects of student and teacher level variables on TIMSS 2007 and 2011 mathematics achievement of Turkish students. Education and Science, 42(189), 27-47.
  • Yazdani, M. A. (2007). Correlation between students' level of understanding geometry according to the Van Hiele's Model and students' achievement in plane geometry. Journal of Mathematical Sciences & Mathematics Education, 40-45.
  • Yuzawa, M., & Bart, W. (2002). Young children's learning of size comparison strategies: Effect of origami exercise. Journal of Genetic Psychology, 163(4), 459-478.

Investigating the relationship between prospective elementary mathematics teachers' Van Hiele Geometric Thinking Levels and beliefs towards using origami in mathematics education in Mathematics with Origami course

Yıl 2017, Cilt: 1 Sayı: 1, 24 - 35, 29.12.2017

Öz

The purpose of this study
is to determine prospective elementary mathematics teachers’ beliefs towards
using origami in mathematics education and Van Hiele Geometric Thinking Levels
and to investigate the relationship between their beliefs and levels. In
addition, this study aims at investigating the effects of elective course named
as Mathematics with Origami on the relationship between prospective teachers’
beliefs and levels. This study was conducted as one group pretest-posttest
experimental design in 2015-2016 academic year spring semester at Sakarya University
Faculty of Education. The participants were 64 prospective elementary
mathematics teachers who still study in elementary mathematics education
program and took Mathematics with Origami course in that time. Data were
collected through Van Hiele Geometric Thinking Test and Origami in Mathematics
Education Belief Scale and analyzed by using SPSS 20.0 program. As descriptive
statistics, means, standard deviations, frequencies and percentages were
computed. As inferential statistics, one way ANOVA and paired samples t-test
were conducted. Results showed that there was an increase in prospective
elementary mathematics teachers’ Van Hiele Geometric Thinking Levels and
beliefs towards benefits of using origami in mathematics education. On the
other hand, there was a decrease in prospective elementary mathematics
teachers’ beliefs towards limitations of using origami in mathematics
education. When the relationship between prospective elementary mathematics
teachers’ Van Hiele Geometric Thinking Levels and geometry achievements is
taken into consideration, it can be concluded that Mathematics with Origami
course can be become widespread for mathematics education and teacher
education.

Kaynakça

  • Arslan, O., & Işıksal_Bostan, M. (2016). Turkish prospective middle school mathematics teachers’ beliefs and perceived self-efficacy beliefs regarding the use of origami in mathematics education. Eurasia Journal of Mathematics, Science & Technology Education, 12(6), 1533-1548.
  • Boakes, N. (2009). Origami instruction in the middle school mathematics classroom: Its impact on spatial visualization and geometry knowledge of students. Research in Middle Level Education Online, 32(7), 1-12.
  • Choi-Koh, S. S. (1999). A student’s learning of geometry using the computer. Journal of Educational Research, 92(5), 301-311.
  • Duatepe, A. (2000). An investigation of the relationship between Van Hiele geometric level of thinking and demographic variables for pre-service elementary school teachers. Yayımlanmamış yüksek lisans tezi. ODTÜ. Ankara
  • Creswell, J. W. (1998). Qualitative inquiry and research design: Choosing among five designs. Thousand Oaks, CA: Sage.
  • Duatepe-Paksu, A. (2016). Van Hiele Geometrik Düşünme Düzeyleri. Bingölbali,E., Arslan, S., & Zembat, İ. Ö. (Edt). Matematik Eğitiminde Teoriler. Sf.266-275. Pegem Akademi. Ankara.
  • Ergene, Ö., Masal, M., Masal, E., & Takunyacı, M. (2017). Investigating prospective elementary mathematics teachers’ skills of relating origami to topics in mathematics curriculum. International Journal of Human Sciences, 14(4), 3780-3792. doi : 10.14687/jhs.v14i4.4965
  • Fraenkel, J., Wallen, N., & Hyun, H. (2011). How to design and evaluate research in education. New York: The McGraw-Hill.
  • Georgeson, J. (2011). Fold in origami and unfold math. Mathematics Teaching in Middle School, 16(6),354-361.
  • Halat, E. (2008). Pre-service elementary school and secondary mathematics teachers’ Van Hiele levels and gender differences. IUMPST: The Journal. Vol 1 (Content Knowledge), May 2008
  • Knight, K. C. (2006). An investigation into the change in the Van Hiele levels of understanding geometry of pre-service elementary and secondary mathematics teachers. Master thesis. The University of Maine, Lincoln.
  • Meng, C. C., & Sam, L. C. (2009). Assessing pre-service secondary mathematics teachers’ geometric thinking. Asian Mathematical Conference, Malaysia 2009.Mullis, I. V. S., Martin, M. O., Foy, P., & Arora, A. (2012). TIMSS 2011 International results in mathematics. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
  • MEB (2017). İlköğretim Matematik Dersi 5–8 Öğretim Programı. Talim Terbiye Kurulu Başkanlığı, Ankara.
  • NCTM. (2000). Principles and standards for school mathematics. Reston, VA: NCTM Publications.
  • Napitupulu, B. (2001). An exploration of students’ understanding and Van Hieles of thinking on geometric constructions (Unpublished master thesis). Simon Fraser University, Canada.
  • Olkun, S. (2002). Sınıf Öğretmenliği ve Matematik Öğretmenliği Öğrencilerinin Geometrik Düşünme Düzeyleri, V. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi Bildiri Özetleri 16-18 Eylül 2002. Ankara: ODTÜ Kültür ve Kongre Merkezi.
  • Patton, M. Q. (1990). How to use qualitative methods in evaluation. London: Sagem Publications, 80-87.
  • Pope, S., (2002). The use of origami in the teaching of geometry. Proceedings of the British Society for Research into Learning Mathematics, 22(3), 67-73.
  • Sarı, M., Arıkan, S., & Yıldızlı, H. (2017). 8. sınıf matematik akademik başarısını yordayan faktörler- TIMSS 2015. Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi, 8(3), 246-265. doi: 10.21031/epod.303689
  • Şahin, O. (2006). Sınıf öğretmenlerinin ve sınıf öğretmeni adaylarının Van Hiele geometrik düşünme düzeyleri. Yayınlanmamış yüksek lisans tezi, Afyon Kocatepe Üniversitesi, Afyon
  • Taş, U. E., Arıcı, Ö., Ozarkan, H. B., & Özgürlük, B. (2016). PISA 2015 Ulusal Raporu. Ankara: MEB.
  • Wares, A. (2011). Using origami boxes to explore concepts of geometry and calculus. International Journal of Mathematical Education in Science and Technology, 42(2), 264-272.
  • Wille, A. M., & Boquet, M. (2009). Imaginary dialogues written by low-achieving students about origami: A case study. In Tzekaki, M. Kaldrimidou, M. & Sakonidis, H. (Eds.) Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education, Vol. 5, pp. 337-344. Thessaloniki, Greece: PMEUsiskin, Z. (1982). Van Hiele Levels of Achievement in Secondary School Geometry. (University of Chicago, Sponsor Agency: National Inst. of Education). Springfield, Virginia: Dyntel Corporation.
  • Yavuz, H. Ç., Demirtaşlı, R. N., Yalçın, S., & İlgün Dibek, M. (2017). The effects of student and teacher level variables on TIMSS 2007 and 2011 mathematics achievement of Turkish students. Education and Science, 42(189), 27-47.
  • Yazdani, M. A. (2007). Correlation between students' level of understanding geometry according to the Van Hiele's Model and students' achievement in plane geometry. Journal of Mathematical Sciences & Mathematics Education, 40-45.
  • Yuzawa, M., & Bart, W. (2002). Young children's learning of size comparison strategies: Effect of origami exercise. Journal of Genetic Psychology, 163(4), 459-478.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Büşra Çaylan 0000-0002-5567-6791

Mithat Takunyacı 0000-0003-1065-975X

Melek Masal 0000-0001-6712-7629

Ercan Masal 0000-0001-8351-7248

Özkan Ergene 0000-0001-5119-2813

Yayımlanma Tarihi 29 Aralık 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 1 Sayı: 1

Kaynak Göster

APA Çaylan, B., Takunyacı, M., Masal, M., Masal, E., vd. (2017). Origami ile Matematik Dersi Süresince İlköğretim Matematik Öğretmeni Adaylarının Van Hiele Geometrik Düşünme Düzeyleri ile Origami İnançları Arasındaki İlişkinin Belirlenmesi. Journal of Multidisciplinary Studies in Education, 1(1), 24-35.