ARGÜMANTASYON TABANLI ÖĞRENME: ÖĞRETMEN ADAYLARININ MATEMATİK SORULARI EŞLİĞİNDE ONLINE ETKİLEŞİMLERİ
Yıl 2020,
, 458 - 487, 31.01.2020
Semirhan Gökçe
,
Arzu Aydoğan Yenmez
,
Tuğba Çelik
Öz
Argümantasyon; iddiaların dayandırıldığı gerekçeler belirtilerek veriler
ile ilişkili olup olmadığının yapılandırıldığı süreçtir. Bu süreçte
matematiksel argümanlar özellikle problem çözümlerinde hayati bir öneme
sahiptir. Geçerli argümanlar ya da ispatlar üretme ve argümanların kritik
edilmesi, matematik yapmanın ayrılmaz parçasıdır. Bu nedenle, muhakeme becerileri
öğrencilere kazandırılmazsa matematik, bir işlem dizisini takip etmek ve
anlamını düşünmeden örnekleri taklit etmek olur. Argümantasyona dayalı öğrenme
ortamlarının iyi yönlendirilmesi gerekmektedir çünkü öğrenciler süreç içinde
verilen argümanları anlamada güçlük çekebilir ya da diğer öğrencilerle
düşüncelerini paylaşmada ya da düşünceleri çürütme aşamasında yanlış anlamalar,
yanlış anlaşılan argümanlardan dolayı da bir takım zorluklar yaşayabilir. Bu
yüzden argümantasyon sürecinin iyi yönetilmesi, bu süreci yaşamaya ve
deneyimlemeye dayalı olarak gerçekleşir. Bu çalışma, öğretmen adaylarının
sınıflarında argümantasyon öğrenme yaklaşımını etkin biçimde uygulayabilmeleri
için öncelikle kendilerinin argümantasyon sürecini yaşamaları gerektiği düşüncesinden
yola çıkılarak geliştirilmiş bir öğretmen eğitimi uygulamasıdır. Çalışmada
öğrenciden gelebilecek sorular üzerinden tasarlanmış online argümantasyon
etkinliklerinde öğretmen adaylarının sergiledikleri pedagojik alan bilgisi
izleri incelenmiş ve öğrenme ortamının güçlü ve zayıf yanları araştırılmıştır.
Sonuç olarak, online argümantasyon yönteminin öğretmen adaylarının pedagojik
alan bilgisi gelişiminde ve kendi öğrenmeleri üzerindeki olumlu etkileri ortaya
çıkmıştır. Sunulan bu hizmet öncesi eğitim bileşenlerinin öğretmen eğitimi
alanında gerçekleştirilecek gelecekteki olası çalışmalara yön vereceği
düşünülmektedir.
Kaynakça
- Baki, A. (2018). Matematiği öğretme bilgisi. Ankara: Pegem Akademi.
- Brown, R. and Redmond, T. (2007). Proceedings of the 30th annual conference of the Mathematics Education Research Group of Australasia. Mathematics: Essential Research, Essential Practice, 1, 163-171.
- Brown, R. and Reeves, B. (2009). Students’ Recollections of Participating in Collective Argumentation When Doing Mathematics. In R. Hunter, B. Bicknell, and T. Burgess, Crossing divides: Proceedings of the 32nd annual conference of the Mathematics Education Research Group of Australasia (pp. 73-80). Palmerston North: MERGA.
- Butchart, S., Forster, D., Gold, I., Bigelow, J., Korb, K., Oppy, G. & Serrenti, A. (2009). Improving critical thinking using web-based argument mapping exercises with automated feedback, Australasian Journal of Educational Technology, 25(2), 268-291.
- Davies, W. M. (2009). Computer-assisted argument mapping: A rationale approach. Higher Education, 58(6), 799–820.
- Driver, R., Newton, P. and Osborne, J. (2000). Establishing the Norms of Argumentation in Classrooms, Science Education, 84, 3, 287–312.
- Erduran, S. and Jiménez-Aleixandre, M. P. (2007). Argumentation in science education: perspectives from classroom-based research. Dordrecht: Springer.
- Günel, M., Kıngır, S., & Geban, Ö. (2012). Argümantasyon tabanlı bilim öğrenme (ATBÖ) yaklaşımının kullanıldığı sınıflarda argümantasyon ve soru yapılarının incelenmesi. Eğitim ve Bilim, 37(164), 316-330.
- Hoffman, D. C. (2008). Murder in sophistopolis: Paradox and probability in the First Tetralogy. Argumentation and Advocacy, 45(1), 1-21.
- Inglis, M., Mejia-Ramos, J. P., Simpson, A. (2007). Modelling mathematical argumentation: The importance of qualification, Educational Studies in Mathematics, 66, 3-21.
- Keys, C.W., Hand, B., Prain, V. and Collins, S. (1999). Using the science writing heuristic as a tool for learning from laboratory investigations in secondary science. Journal of Research in Science Teaching, 36, 1065-1081.
- Kiili, C. (2013). Argument graph as a tool for promoting collaborative online reading. Journal of Computer Assisted Learning, 29(3), 248-259.
- Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures. Hillsdale, NJ: Lawrence Erlbaum.
- Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom two episodes and related theoretical abductions. Journal of Mathematical Behavior, 26, 60-82.
- Kuhn, D. (1991). The Skills of Argument. Cambridge: Cambridge University Press.
- Ludvingsen, S. R. (2012). What counts as knowledge: Learning to use categories in computer environments. Learning, Media and Technology, 37(1), 40-52.
- Miles, M. B. & Huberman, A. M. (1994). Qualitative Data Analysis (2nd edition). Thousand Oaks, CA: Sage Publications.
- Newton, P., Driver, R. and Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553-576.
- Okada, A. (2008). Scaffolding school pupils’ scientific argumentation with evidence-based dialogue maps. In Knowledge Cartography (pp. 131-162). Springer, London.
- Ross, K. A. (1998). The place of Algorithms and Proofs in School Mathematics. Doing and Proving. March, 252-255.
- Toulmin, S.E. (2003). The Uses of Argument. Cambridge, UK: University Press.
- Wood, T. (1999). Creating a context for argument in mathematics class. Journal for Research in Mathematics Education, 30(2), 171-191.
- Yackel, E. (2001). Explanation, justification and argumentation in mathematics classrooms. In M. Van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 33-40), Utrecht, The Netherlands.
- Yıldırım, A., & Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayınları.
- Zeidler, D. L. (1997). The central role of fallacious thinking in science education. Science Education, 81, 483– 496.
ARGUMENTATION-BASED LEARNING: AN EXAMPLE OF MATHEMATICAL QUESTIONS THROUGH ONLINE INTERACTIONS AMONG PROSPECTIVE TEACHERS
Yıl 2020,
, 458 - 487, 31.01.2020
Semirhan Gökçe
,
Arzu Aydoğan Yenmez
,
Tuğba Çelik
Öz
Argumentation is a process in which
whether arguments are associated with data is constructed with warrants that
they are based on. In this process, mathematical arguments are of vital
importance especially in problem solving. Producing valid arguments or proofs
and criticizing the arguments are inseparable parts of doing math. Therefore,
if there is nothing done to develop reasoning skills, mathematics will become
just following a sequence of operations and copying the examples without
thinking about their meanings. It is necessary to direct argumentation-based
learning environments well because students may find it hard to understand
given arguments or have certain challenges due to misunderstandings and
misunderstood arguments when sharing their ideas with other students or during
the stage of invalidating the ideas. This is why good direction of the
argumentation process depends on living and experiencing the process itself.
This study is an application of teacher education developed in the light of the
idea that prospective teachers need to experience their own processes of
argumentation so that they could handle the argumentation-based learning
approach in their future classrooms. Traces of pedagogical content knowledge
exhibited by the prospective teachers in the online argumentation activities
which were designed through possible student questions were examined, and the
strengths and weaknesses of the learning environment were investigated in the
study. Consequently, online argumentation method was found to have positive
impacts on the improvement of prospective teacher’s pedagogical content
knowledge and their own learning. It is anticipated that these presented
preservice education components will shape future studies to be carried out in
the field of teacher education.
Kaynakça
- Baki, A. (2018). Matematiği öğretme bilgisi. Ankara: Pegem Akademi.
- Brown, R. and Redmond, T. (2007). Proceedings of the 30th annual conference of the Mathematics Education Research Group of Australasia. Mathematics: Essential Research, Essential Practice, 1, 163-171.
- Brown, R. and Reeves, B. (2009). Students’ Recollections of Participating in Collective Argumentation When Doing Mathematics. In R. Hunter, B. Bicknell, and T. Burgess, Crossing divides: Proceedings of the 32nd annual conference of the Mathematics Education Research Group of Australasia (pp. 73-80). Palmerston North: MERGA.
- Butchart, S., Forster, D., Gold, I., Bigelow, J., Korb, K., Oppy, G. & Serrenti, A. (2009). Improving critical thinking using web-based argument mapping exercises with automated feedback, Australasian Journal of Educational Technology, 25(2), 268-291.
- Davies, W. M. (2009). Computer-assisted argument mapping: A rationale approach. Higher Education, 58(6), 799–820.
- Driver, R., Newton, P. and Osborne, J. (2000). Establishing the Norms of Argumentation in Classrooms, Science Education, 84, 3, 287–312.
- Erduran, S. and Jiménez-Aleixandre, M. P. (2007). Argumentation in science education: perspectives from classroom-based research. Dordrecht: Springer.
- Günel, M., Kıngır, S., & Geban, Ö. (2012). Argümantasyon tabanlı bilim öğrenme (ATBÖ) yaklaşımının kullanıldığı sınıflarda argümantasyon ve soru yapılarının incelenmesi. Eğitim ve Bilim, 37(164), 316-330.
- Hoffman, D. C. (2008). Murder in sophistopolis: Paradox and probability in the First Tetralogy. Argumentation and Advocacy, 45(1), 1-21.
- Inglis, M., Mejia-Ramos, J. P., Simpson, A. (2007). Modelling mathematical argumentation: The importance of qualification, Educational Studies in Mathematics, 66, 3-21.
- Keys, C.W., Hand, B., Prain, V. and Collins, S. (1999). Using the science writing heuristic as a tool for learning from laboratory investigations in secondary science. Journal of Research in Science Teaching, 36, 1065-1081.
- Kiili, C. (2013). Argument graph as a tool for promoting collaborative online reading. Journal of Computer Assisted Learning, 29(3), 248-259.
- Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures. Hillsdale, NJ: Lawrence Erlbaum.
- Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom two episodes and related theoretical abductions. Journal of Mathematical Behavior, 26, 60-82.
- Kuhn, D. (1991). The Skills of Argument. Cambridge: Cambridge University Press.
- Ludvingsen, S. R. (2012). What counts as knowledge: Learning to use categories in computer environments. Learning, Media and Technology, 37(1), 40-52.
- Miles, M. B. & Huberman, A. M. (1994). Qualitative Data Analysis (2nd edition). Thousand Oaks, CA: Sage Publications.
- Newton, P., Driver, R. and Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553-576.
- Okada, A. (2008). Scaffolding school pupils’ scientific argumentation with evidence-based dialogue maps. In Knowledge Cartography (pp. 131-162). Springer, London.
- Ross, K. A. (1998). The place of Algorithms and Proofs in School Mathematics. Doing and Proving. March, 252-255.
- Toulmin, S.E. (2003). The Uses of Argument. Cambridge, UK: University Press.
- Wood, T. (1999). Creating a context for argument in mathematics class. Journal for Research in Mathematics Education, 30(2), 171-191.
- Yackel, E. (2001). Explanation, justification and argumentation in mathematics classrooms. In M. Van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 33-40), Utrecht, The Netherlands.
- Yıldırım, A., & Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayınları.
- Zeidler, D. L. (1997). The central role of fallacious thinking in science education. Science Education, 81, 483– 496.