Araştırma Makalesi
BibTex RIS Kaynak Göster

KIRMIZI ÜZÜM SUYU ÜRETİM SÜRECİNDE RESVERATROL MİKTARI VE BİYOAKTİF ÖZELLİKLERDE MEYDANA GELEN DEĞİŞİMLER

Yıl 2018, Cilt: 43 Sayı: 2, 321 - 332, 08.03.2018
https://doi.org/10.15237/gida.GD17110

Öz

Bu araştırma kapsamında, kırmızı üzüm çeşitlerinden üzüm
suyu üretim sürecinde biyoaktif özellikler (toplam fenolik madde, antiradikal
aktivite, toplam antosiyanin) ve resveratrol miktarlarında meydana gelen
stabilite veya değişimlerin belirlenmesi amaçlanmıştır. Bu kapsamda, Cabarnet
Sauvignon ve Papazkarası üzüm çeşitleri kullanılarak kırmızı üzüm suyu üretimi
gerçekleştirilmiş, işleme sürecinde belirlenen proses basamaklarında örnekler
alınarak incelenmiştir. Örneklerdeki resveratrol miktarları, C18 ters faz kolon
ve floresans dedektörle kombine edilmiş HPLC sistemi kullanılarak
belirlenmiştir. Toplam fenolik madde, toplam antosiyanin, DPPH serbest radikal
yakalama ve ABTS radikal yakalama kapasitesi değerleri spektrofotometrik
yöntemlerle belirlenmiştir. Üzüm suyu üretim sürecinde, özellikle durultma ve
kaba filtrasyon işlemlerinin biyoaktif özelliklerde kayıplara yol açtığı, genel
olarak proses boyunca resveratrolde artışlar olurken, toplam fenolik madde ve
antioksidan aktivite değerlerinin ise daha stabil kaldığı görülmüştür. İşleme
sürecinde en fazla kayıp toplam antosiyanin miktarlarında meydana gelmiş,
başlangıç değerlerine göre kayıp oranı %50’nin üzerinde olmuştur. 

Kaynakça

  • Adıgüzel BÇ (2007). Bazı bölgelerimizde üretilen şrapların resveratrol düzeyleri ve bölgelerin ekolojik koşullarının resveratrol içeriği üzerine etkileri. Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Amarowicz R, Carle R, Dongowski G, Durazzo A, Galensa R, Kammerer D, ... & Piskula M K (2009). Influence of postharvest processing and storage on the content of phenolic acids and flavonoids in foods. Molecular nutrition & food research, 53(S2): 151-183.
  • Capanoglu E, de Vos RC, Hall RD, Boyacioglu D, Beekwilder J (2013). Changes in polyphenol content during production of grape juice concentrate. Food chemistry, 139(1): 521-526.
  • Cemeroğlu B (2007). Gıda analizleri. Gıda Teknolojisi Derneği Yayınları, 657s, Ankara.
  • Cheynier V (2005). Polyphenols in foods are more complex than often thought. The American journal of clinical nutrition, 81(1): 223-229.
  • Dani C, Oliboni LS, Vanderlinde R, Bonatto D, Salvador M, Henriques JAP (2007). Phenolic content and antioxidant activities of white and purple juices manufactured with organically-or conventionally-produced grapes. Food and Chemical Toxicology, 45(12): 2574-2580.
  • Garzón GA, Wrolstad RE (2009). Major anthocyanins and antioxidant activity of Nasturtium flowers (Tropaeolum majus). Food Chemistry, 114(1): 44-49.
  • Gollücke APB, Catharino RR, de Souza JC, Eberlin MN, de Queiroz Tavares D (2009). Evolution of major phenolic components and radical scavenging activity of grape juices through concentration process and storage. Food Chemistry, 112(4): 868-873.
  • Gülcü, M. 2016. Bazı Üzüm Çeşitlerinin Resveratrol ve Biyoaktif Özelliklerine Ürün İşleme ve Depolamanın Etkisi, Namık Kemal Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi. 184 s. Tekirdağ.
  • Karadeniz F (2000). Üzümlerde ve Şaraplarda Resveratrol. GIDA/THE JOURNAL OF FOOD, 25 (2).
  • Kulcan AA, Öziyci HR, Tetik N, Karhan M (2015). Changes in turbidity, total phenolic and anthocyanin contents of clear red grape juice during processing. GIDA/The Journal of FOOD, 40(6).
  • Lachman J, Šulc M, Faitová K, Pivec V (2009). Major factors influencing antioxidant contents and antioxidant activity in grapes and wines. International Journal of Wine Research, 1 (1): 101-121.
  • Lamuela-Raventós RM, Romero-Perez AI, de la Torre-Boronat MC (2001). Physiological properties of resveratrol isomers in wine: Compositional changes during processing. In Polyphenols, Wine and Health Springer Netherlands. : 123-137.
  • LeBlanc MR (2006). Cultivar, juice extraction, ultra violet irradiation and storage influence the stilbene content of muscadine grape (Vitis rotundifolia Michx.). PhD Thesis, Louisiana State University.
  • Morris JR, Brady PL (2004). The muscadine experience: adding value to enhance profits (Vol. 974). Arkansas Agricultural Experiment Station.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9): 1231-1237.
  • Romero-Perez AI, Ibern-Gomez M, Lamuela-Raventos RM, Torre-Boronat MC (1999). Piceid, the major resveratrol derivative in grape juices. J. Agric. Food Chem., 47: 1533-1536.
  • Sacchi KL, Bisson LF, Adams DO (2005). A review of the effect of winemaking techniques on phenolic extraction in red wines. American Journal of Enology and Viticulture, 56(3): 197-206.
  • Tříska J, Balík J, Strohalm J, Novotná P, Vrchotová N, Lefnerová D, ... & Houška M (2015). Influence of Technological Processes on Biologically Active Compounds of Produced Grapes Juices. Food and Bioprocess Technology, 1-9.
  • Waterhouse AL (2002). Determination of total phenolics. Current protocols in food analytical chemistry.

CHANGES IN RESVERATROL CONTENT AND BIOACTIVE PROPERTIES DURING PRODUCTION PROCESS OF RED GRAPE JUICE

Yıl 2018, Cilt: 43 Sayı: 2, 321 - 332, 08.03.2018
https://doi.org/10.15237/gida.GD17110

Öz

In this study, it was aimed to determine the stability
and changes of bioactive properties (total phenolic content, antioxidant
capacity, and total anthocyanin) and resveratrol contents during the production
process of red grape juice. In this context, two red grape varieties (Cabarnet
Sauvignon and Papazkarası) were used for grape juice production and juice
samples were evaluated from each production step. Resveratrol contents of
samples were determined using an HPLC system with C18 reverse phase column and
fluorescence detector. Total phenolic content, total anthocyanin, DPPH free
radical scavenging and ABTS radical scavenging capacities were determined by
spectrophotometric methods. In grape juice production process, bioactive
properties decreased particularly in clarification and coarse filtration
operations. In the overall process, resveratrol content increased while the
total phenolic content and antioxidant activity values remained stable. During
processing, the maximum loss, over 50% compared to the initial values, occured
in the total anthocyanins.

Kaynakça

  • Adıgüzel BÇ (2007). Bazı bölgelerimizde üretilen şrapların resveratrol düzeyleri ve bölgelerin ekolojik koşullarının resveratrol içeriği üzerine etkileri. Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Amarowicz R, Carle R, Dongowski G, Durazzo A, Galensa R, Kammerer D, ... & Piskula M K (2009). Influence of postharvest processing and storage on the content of phenolic acids and flavonoids in foods. Molecular nutrition & food research, 53(S2): 151-183.
  • Capanoglu E, de Vos RC, Hall RD, Boyacioglu D, Beekwilder J (2013). Changes in polyphenol content during production of grape juice concentrate. Food chemistry, 139(1): 521-526.
  • Cemeroğlu B (2007). Gıda analizleri. Gıda Teknolojisi Derneği Yayınları, 657s, Ankara.
  • Cheynier V (2005). Polyphenols in foods are more complex than often thought. The American journal of clinical nutrition, 81(1): 223-229.
  • Dani C, Oliboni LS, Vanderlinde R, Bonatto D, Salvador M, Henriques JAP (2007). Phenolic content and antioxidant activities of white and purple juices manufactured with organically-or conventionally-produced grapes. Food and Chemical Toxicology, 45(12): 2574-2580.
  • Garzón GA, Wrolstad RE (2009). Major anthocyanins and antioxidant activity of Nasturtium flowers (Tropaeolum majus). Food Chemistry, 114(1): 44-49.
  • Gollücke APB, Catharino RR, de Souza JC, Eberlin MN, de Queiroz Tavares D (2009). Evolution of major phenolic components and radical scavenging activity of grape juices through concentration process and storage. Food Chemistry, 112(4): 868-873.
  • Gülcü, M. 2016. Bazı Üzüm Çeşitlerinin Resveratrol ve Biyoaktif Özelliklerine Ürün İşleme ve Depolamanın Etkisi, Namık Kemal Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi. 184 s. Tekirdağ.
  • Karadeniz F (2000). Üzümlerde ve Şaraplarda Resveratrol. GIDA/THE JOURNAL OF FOOD, 25 (2).
  • Kulcan AA, Öziyci HR, Tetik N, Karhan M (2015). Changes in turbidity, total phenolic and anthocyanin contents of clear red grape juice during processing. GIDA/The Journal of FOOD, 40(6).
  • Lachman J, Šulc M, Faitová K, Pivec V (2009). Major factors influencing antioxidant contents and antioxidant activity in grapes and wines. International Journal of Wine Research, 1 (1): 101-121.
  • Lamuela-Raventós RM, Romero-Perez AI, de la Torre-Boronat MC (2001). Physiological properties of resveratrol isomers in wine: Compositional changes during processing. In Polyphenols, Wine and Health Springer Netherlands. : 123-137.
  • LeBlanc MR (2006). Cultivar, juice extraction, ultra violet irradiation and storage influence the stilbene content of muscadine grape (Vitis rotundifolia Michx.). PhD Thesis, Louisiana State University.
  • Morris JR, Brady PL (2004). The muscadine experience: adding value to enhance profits (Vol. 974). Arkansas Agricultural Experiment Station.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9): 1231-1237.
  • Romero-Perez AI, Ibern-Gomez M, Lamuela-Raventos RM, Torre-Boronat MC (1999). Piceid, the major resveratrol derivative in grape juices. J. Agric. Food Chem., 47: 1533-1536.
  • Sacchi KL, Bisson LF, Adams DO (2005). A review of the effect of winemaking techniques on phenolic extraction in red wines. American Journal of Enology and Viticulture, 56(3): 197-206.
  • Tříska J, Balík J, Strohalm J, Novotná P, Vrchotová N, Lefnerová D, ... & Houška M (2015). Influence of Technological Processes on Biologically Active Compounds of Produced Grapes Juices. Food and Bioprocess Technology, 1-9.
  • Waterhouse AL (2002). Determination of total phenolics. Current protocols in food analytical chemistry.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Diğer ID GD17110
Bölüm Makaleler
Yazarlar

Mehmet Gülcü

Figen Dağlıoğlu

Yayımlanma Tarihi 8 Mart 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 43 Sayı: 2

Kaynak Göster

APA Gülcü, M., & Dağlıoğlu, F. (2018). KIRMIZI ÜZÜM SUYU ÜRETİM SÜRECİNDE RESVERATROL MİKTARI VE BİYOAKTİF ÖZELLİKLERDE MEYDANA GELEN DEĞİŞİMLER. Gıda, 43(2), 321-332. https://doi.org/10.15237/gida.GD17110
AMA Gülcü M, Dağlıoğlu F. KIRMIZI ÜZÜM SUYU ÜRETİM SÜRECİNDE RESVERATROL MİKTARI VE BİYOAKTİF ÖZELLİKLERDE MEYDANA GELEN DEĞİŞİMLER. GIDA. Şubat 2018;43(2):321-332. doi:10.15237/gida.GD17110
Chicago Gülcü, Mehmet, ve Figen Dağlıoğlu. “KIRMIZI ÜZÜM SUYU ÜRETİM SÜRECİNDE RESVERATROL MİKTARI VE BİYOAKTİF ÖZELLİKLERDE MEYDANA GELEN DEĞİŞİMLER”. Gıda 43, sy. 2 (Şubat 2018): 321-32. https://doi.org/10.15237/gida.GD17110.
EndNote Gülcü M, Dağlıoğlu F (01 Şubat 2018) KIRMIZI ÜZÜM SUYU ÜRETİM SÜRECİNDE RESVERATROL MİKTARI VE BİYOAKTİF ÖZELLİKLERDE MEYDANA GELEN DEĞİŞİMLER. Gıda 43 2 321–332.
IEEE M. Gülcü ve F. Dağlıoğlu, “KIRMIZI ÜZÜM SUYU ÜRETİM SÜRECİNDE RESVERATROL MİKTARI VE BİYOAKTİF ÖZELLİKLERDE MEYDANA GELEN DEĞİŞİMLER”, GIDA, c. 43, sy. 2, ss. 321–332, 2018, doi: 10.15237/gida.GD17110.
ISNAD Gülcü, Mehmet - Dağlıoğlu, Figen. “KIRMIZI ÜZÜM SUYU ÜRETİM SÜRECİNDE RESVERATROL MİKTARI VE BİYOAKTİF ÖZELLİKLERDE MEYDANA GELEN DEĞİŞİMLER”. Gıda 43/2 (Şubat 2018), 321-332. https://doi.org/10.15237/gida.GD17110.
JAMA Gülcü M, Dağlıoğlu F. KIRMIZI ÜZÜM SUYU ÜRETİM SÜRECİNDE RESVERATROL MİKTARI VE BİYOAKTİF ÖZELLİKLERDE MEYDANA GELEN DEĞİŞİMLER. GIDA. 2018;43:321–332.
MLA Gülcü, Mehmet ve Figen Dağlıoğlu. “KIRMIZI ÜZÜM SUYU ÜRETİM SÜRECİNDE RESVERATROL MİKTARI VE BİYOAKTİF ÖZELLİKLERDE MEYDANA GELEN DEĞİŞİMLER”. Gıda, c. 43, sy. 2, 2018, ss. 321-32, doi:10.15237/gida.GD17110.
Vancouver Gülcü M, Dağlıoğlu F. KIRMIZI ÜZÜM SUYU ÜRETİM SÜRECİNDE RESVERATROL MİKTARI VE BİYOAKTİF ÖZELLİKLERDE MEYDANA GELEN DEĞİŞİMLER. GIDA. 2018;43(2):321-32.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/