Araştırma Makalesi
BibTex RIS Kaynak Göster

Siirt-Pervari yöresinden toplanan balların fizikokimyasal özelliklerinin belirlenmesi

Yıl 2023, Cilt: 27 Sayı: 3, 405 - 414, 27.09.2023
https://doi.org/10.29050/harranziraat.1189588

Öz

Bu çalışmada Siirt ili Pervari ilçesinde üretimi yapılan balların karakteristik özelliklerini ortaya koymak amaçlanmıştır. Bu bağlamda 20 farklı yerel üreticiden toplanan ballarda kül miktarı, 5-hidroksimetilfurfural (HMF), toplam fenolik madde miktarı ve antioksidan aktivite analizleri yapılmıştır. Ayrıca, tüm numunelerin şeker fraksiyonları yüksek performanslı sıvı kromatografisi (HPLC) kullanılarak araştırılmıştır. Bal örneklerinin kül miktarı (%0.14-0.37) ve HMF (0.83-0.94 mg kg-1) açısından Türk Gıda Kodeksi Bal Tebliği (2020/7) ile uyumlu olduğu tespit edilmiştir. Örneklerin toplam fenolik madde miktarı ve antioksidan aktivite sonuçları sırasıyla 19.59-30.93 mg gallik asit eşdeğeri (GAE) 100 g-1 ve 12.87-23.94 askorbik asit eşdeğeri (AAE) 100 g-1 arasında olduğu belirlenmiştir. Ballardaki şeker miktarı da Türk Gıda Kodeksi Bal Tebliği (2020/7) ile uyumlu olup balda oransal olarak ilk sırayı glukozun (%41.25-50.11) daha sonra fruktozun (%33.91-45.37) ve sakkarozun (%3.27-4.70) aldığı bulunmuştur. Elde edilen sonuçlar kalite standardı için referans niteliği sağlayacak ve Pervari ballarının ulusal ve uluslararası pazarlarda görünürlüğünü arttıracaktır.

Destekleyen Kurum

Bu çalışma, Harran Üniversitesi Bilimsel Araştırma Projeleri Birimi (HÜBAP) tarafından desteklenmiştir.

Proje Numarası

17078

Kaynakça

  • Afrin, S., Giampieri, F., Cianciosi, D., Alvarez-Suarez, J. M., Bullon, B., Amici, A., ... & Battino, M. (2021). Strawberry tree honey in combination with 5-fluorouracil enhances chemosensitivity in human colon adenocarcinoma cells. Food and Chemical Toxicology, 156, 112484. https://doi.org/10.1016/j.fct.2021.112484.
  • Al-Farsi, M., Al-Belushi, S., Al-Amri, A., Al-Hadhrami, A., Al-Rusheidi, M., & Al-Alawi, A. (2018). Quality evaluation of Omani honey. Food Chemistry, 262, 162-167. https://doi.org/10.1016/j.foodchem.2018.04.104.
  • Almasaudi, S. (2021). The antibacterial activities of honey. Saudi Journal of Biological Sciences, 28(4), 2188-2196. https://doi.org/10.1016/j.sjbs.2020.10.017.
  • Alvarez-Suarez, J. M., Tulipani, S., Díaz, D., Estevez, Y., Romandini, S., Giampieri, F., ... & Battino, M. (2010). Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. Food and Chemical Toxicology, 48(8-9), 2490-2499. https://doi.org/10.1016/j.fct.2010.06.021.
  • Alves, A., Ramos, A., Gonçalves, M. M., Bernardo, M., & Mendes, B. (2013). Antioxidant activity, quality parameters and mineral content of Portuguese monofloral honeys. Journal of Food Composition and Analysis, 30(2), 130-138. https://doi.org/10.1016/j.jfca.2013.02.009.
  • Amran, N., & Abdul-Rahman, P. S. (2022). Differential proteome and functional analysis of NSCLC cell lines in response to Tualang honey treatment. Journal of Ethnopharmacology, 293, 115264. https://doi.org/10.1016/j.jep.2022.115264.
  • Anupama, D., Bhat, K. K., & Sapna, V. K. (2003). Sensory and physico-chemical properties of commercial samples of honey. Food research international, 36(2), 183-191. https://doi.org/10.1016/S0963-9969(02)00135-7.
  • Attanzio, A., Tesoriere, L., Allegra, M., & Livrea, M. A. (2016). Monofloral honeys by Sicilian black honeybee (Apis mellifera ssp. sicula) have high reducing power and antioxidant capacity. Heliyon, 2(11), e00193. https://doi.org/10.1016/j.heliyon.2016.e00193.
  • Başyiğit, B., Sağlam, H., Köroğlu, K., & Karaaslan, M. (2020). Compositional analysis, biological activity, and food protecting ability of ethanolic extract of Quercus infectoria gall. Journal of Food Processing and Preservation, 44(9), e14692. https://doi.org/10.1111/jfpp.14692.
  • Biluca, F. C., de Gois, J. S., Schulz, M., Braghini, F., Gonzaga, L. V., Maltez, H. F., ... & Fett, R. (2017). Phenolic compounds, antioxidant capacity and bioaccessibility of minerals of stingless bee honey (Meliponinae). Journal of Food Composition and Analysis, 63, 89-97. https://doi.org/10.1016/j.jfca.2017.07.039.
  • Biluca, F. C., da Silva, B., Caon, T., Mohr, E. T. B., Vieira, G. N., Gonzaga, L. V., ... & Costa, A. C. O. (2020). Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae). Food Research International, 129, 108756. https://doi.org/10.1016/j.foodres.2019.108756.
  • Bobis, O., Moise, A. R., Ballesteros, I., Reyes, E. S., Durán, S. S., Sánchez-Sánchez, J., ... & Alvarez-Suarez, J. M. (2020). Eucalyptus honey: Quality parameters, chemical composition and health-promoting properties. Food chemistry, 325, 126870. https://doi.org/10.1016/j.foodchem.2020.126870.
  • Bogdanov, S., Jurendic, T., Sieber, R., & Gallmann, P. (2008). Honey for nutrition and health: a review. Journal of the American college of Nutrition, 27(6), 677-689. https://doi.org/10.1080/07315724.2008.10719745.
  • Bogdanov, S. (2009). The book of honey. Bee product science, 46, 269-275.
  • Bueno-Costa, F. M., Zambiazi, R. C., Bohmer, B. W., Chaves, F. C., da Silva, W. P., Zanusso, J. T., & Dutra, I. (2016). Antibacterial and antioxidant activity of honeys from the state of Rio Grande do Sul, Brazil. LWT-Food Science and Technology, 65, 333-340. https://doi.org/10.1016/j.lwt.2015.08.018.
  • Can, Z., Yildiz, O., Sahin, H., Turumtay, E. A., Silici, S., & Kolayli, S. (2015). An investigation of Turkish honeys: their physico-chemical properties, antioxidant capacities and phenolic profiles. Food chemistry, 180, 133-141. https://doi.org/10.1016/j.foodchem.2015.02.024.
  • Čanadanović-Brunet, J., Ćetković, G., Šaponjac, V. T., Stajčić, S., Vulić, J., Djilas, S., ... & Popović, B. (2014). Evaluation of phenolic content, antioxidant activity and sensory characteristics of Serbian honey-based product. Industrial Crops and Products, 62, 1-7. https://doi.org/10.1016/j.indcrop.2014.08.009.
  • Chakir, A., Romane, A., Marcazzan, G. L., & Ferrazzi, P. (2016). Physicochemical properties of some honeys produced from different plants in Morocco. Arabian Journal of Chemistry, 9, S946-S954. https://doi.org/10.1016/j.arabjc.2011.10.013.
  • Chalcoff, V. R., Aizen, M. A., & Galetto, L. (2006). Nectar concentration and composition of 26 species from the temperate forest of South America. Annals of botany, 97(3), 413-421. https://doi.org/10.1093/aob/mcj043.
  • Corbet, S. A. (2003). Nectar sugar content: estimating standing crop and secretion rate in the field. Apidologie, 34(1), 1-10. https://doi.org/10.1051/apido:2002049.
  • Çimen, S. (2021). Bala farklı oranlarda mısır şurubu katılarak yapılan tağşişin FTIR-ATR spektroskopisi ile belirlenmesi. Yükseklisans Tezi, Fen Bilimleri Enstitüsü, Manisa Celal Bayar Üniversitesi, Manisa, 149s.
  • da Silva, P. M., Gauche, C., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2016). Honey: Chemical composition, stability and authenticity. Food chemistry, 196, 309-323. https://doi.org/10.1016/j.foodchem.2015.09.051.
  • de Sousa, J. M. B., de Souza, E. L., Marques, G., de Toledo Benassi, M., Gullón, B., Pintado, M. M., & Magnani, M. (2016). Sugar profile, physicochemical and sensory aspects of monofloral honeys produced by different stingless bee species in Brazilian semi-arid region. LWT-Food Science and Technology, 65, 645-651. https://doi.org/10.1016/j.lwt.2015.08.058.
  • do Nascimento, K. S., Sattler, J. A. G., Macedo, L. F. L., González, C. V. S., de Melo, I. L. P., da Silva Araújo, E., ... & de Almeida-Muradian, L. B. (2018). Phenolic compounds, antioxidant capacity and physicochemical properties of Brazilian Apis mellifera honeys. LWT, 91, 85-94. https://doi.org/10.1016/j.lwt.2018.01.016.
  • El-Haskoury, R., Kriaa, W., Lyoussi, B., & Makni, M. (2018). Ceratonia siliqua honeys from Morocco: Physicochemical properties, mineral contents, and antioxidant activities. Journal of food and drug analysis, 26(1), 67-73. https://doi.org/10.1016/j.jfda.2016.11.016.
  • El Sohaimy, S. A., Masry, S. H. D., & Shehata, M. G. (2015). Physicochemical characteristics of honey from different origins. Annals of Agricultural Sciences, 60(2), 279-287. https://doi.org/10.1016/j.aoas.2015.10.015.
  • Escuredo, O., Míguez, M., Fernández-González, M., & Seijo, M. C. (2013). Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food chemistry, 138(2-3), 851-856. https://doi.org/10.1016/j.foodchem.2012.11.015.
  • Gallardo-Guerrero, L., Perez-Galvez, A., Aranda, E., Mınguez-Mosquera, M. I., And Hornero-Mendez, D. (2010). Physcochemical and Microbiological Characterization of Dehydration Processing of Red Pepper Fruits for Paprika Production. LWT-Food Science and Technology, 43: 1359-1367. https://doi.org/10.1016/j.lwt.2010.04.015.
  • Karabagias, I. K., Badeka, A., Kontakos, S., Karabournioti, S., & Kontominas, M. G. (2014). Characterisation and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters and chemometrics. Food chemistry, 146, 548-557. https://doi.org/10.1016/j.foodchem.2013.09.105.
  • Küçük, M., Kolaylı, S., Karaoğlu, Ş., Ulusoy, E., Baltacı, C., & Candan, F. (2007). Biological activities and chemical composition of three honeys of different types from Anatolia. Food chemistry, 100(2), 526-534. https://doi.org/10.1016/j.foodchem.2005.10.010.
  • Majtan, J., Bucekova, M., Kafantaris, I., Szweda, P., Hammer, K., & Mossialos, D. (2021). Honey antibacterial activity: A neglected aspect of honey quality assurance as functional food. Trends in Food Science & Technology, 118, 870-886. https://doi.org/10.1016/j.tifs.2021.11.012.
  • Meda, A., Lamien, C. E., Romito, M., Millogo, J., & Nacoulma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food chemistry, 91(3), 571-577. https://doi.org/10.1016/j.foodchem.2004.10.006.
  • Menzel, R., & Muller, U. (1996). Learning and memory in honeybees: from behavior to neural substrates. Annual review of neuroscience, 19(1), 379-404.
  • Menzel, R., Greggers, U., Smith, A., Berger, S., Brandt, R., Brunke, S., ... & Watzl, S. (2005). Honey bees navigate according to a map-like spatial memory. Proceedings of the National Academy of Sciences, 102(8), 3040-3045. https://doi.org/10.1073/pnas.04085501.
  • Mračević, S. Đ., Krstić, M., Lolić, A., & Ražić, S. (2020). Comparative study of the chemical composition and biological potential of honey from different regions of Serbia. Microchemical Journal, 152, 104420. https://doi.org/10.1016/j.microc.2019.104420.
  • Nicewicz, A. W., Nicewicz, Ł., & Pawłowska, P. (2021). Antioxidant capacity of honey from the urban apiary: A comparison with honey from the rural apiary. Scientific Reports, 11(1), 1-8. https://doi.org/10.1038/s41598-021-89178-4.
  • Noor, N., Sarfraz, R. A., Ali, S., & Shahid, M. (2014). Antitumour and antioxidant potential of some selected Pakistani honeys. Food Chemistry, 143, 362-366. https://doi.org/10.1016/j.foodchem.2013.07.084.
  • Ouchemoukh, S., Schweitzer, P., Bey, M. B., Djoudad-Kadji, H., & Louaileche, H. (2010). HPLC sugar profiles of Algerian honeys. Food chemistry, 121(2), 561-568. https://doi.org/10.1016/j.foodchem.2009.12.047.
  • Pasias, I. N., Kiriakou, I. K., & Proestos, C. (2017). HMF and diastase activity in honeys: A fully validated approach and a chemometric analysis for identification of honey freshness and adulteration. Food Chemistry, 229, 425-431. https://doi.org/10.1016/j.foodchem.2017.02.084.
  • Sandoz, J. C., Roger, B., & Pham-Delegue, M. H. (1995). Olfactory learning and memory in the honeybee: comparison of different classical conditioning procedures of the proboscis extension response. Comptes Rendus de L'academie des sciences. Serie III, Sciences de la vie, 318(7), 749-755.
  • Saxena, S., Gautam, S., & Sharma, A. (2010). Physical, biochemical and antioxidant properties of some Indian honeys. Food chemistry, 118(2), 391-397. https://doi.org/10.1016/j.foodchem.2009.05.001.
  • Scepankova, H., Saraiva, J. A., & Estevinho, L. M. (2017). Honey health benefits and uses in medicine. In Bee products-Chemical and biological properties (pp. 83-96). Springer, Cham. http://doi.org/10.1007/978-3-319-59689-1_4.
  • Scheiner, R., Page, R. E., & Erber, J. (2004). Sucrose responsiveness and behavioral plasticity in honey bees (Apis mellifera). Apidologie, 35(2), 133-142. https://doi.org/10.1051/apido:2004001.
  • Silici, S., Sagdic, O., & Ekici, L. (2010). Total phenolic content, antiradical, antioxidant and antimicrobial activities of Rhododendron honeys. Food Chemistry, 121(1), 238-243. https://doi.org/10.1016/j.foodchem.2009.11.078.
  • Singleton, V., And Rossi, J. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3): 144–158.
  • Sousa, J. M., De Souza, E. L., Marques, G., Meireles, B., de Magalhães Cordeiro, Â. T., Gullón, B., ... & Magnani, M. (2016). Polyphenolic profile and antioxidant and antibacterial activities of monofloral honeys produced by Meliponini in the Brazilian semiarid region. Food Research International, 84, 61-68. https://doi.org/10.1016/j.foodres.2016.03.012.
  • Spilioti, E., Jaakkola, M., Tolonen, T., Lipponen, M., Virtanen, V., Chinou, I., ... & Moutsatsou, P. (2014). Phenolic acid composition, antiatherogenic and anticancer potential of honeys derived from various regions in Greece. PloS one, 9(4), e94860. https://doi.org/10.1371/journal.pone.0094860.
  • Tornuk, F., Karaman, S., Ozturk, I., Toker, O. S., Tastemur, B., Sagdic, O., ... & Kayacier, A. (2013). Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile. Industrial Crops and Products, 46, 124-131. https://doi.org/10.1016/j.indcrop.2012.12.042.
  • Valdés-Silverio, L. A., Iturralde, G., García-Tenesaca, M., Paredes-Moreta, J., Narváez-Narváez, D. A., Rojas-Carrillo, M., ... & Alvarez-Suarez, J. M. (2018). Physicochemical parameters, chemical composition, antioxidant capacity, microbial contamination and antimicrobial activity of Eucalyptus honey from the Andean region of Ecuador. Journal of Apicultural Research, 57(3), 382-394. https://doi.org/10.1080/00218839.2018.1426349.
  • Vică, M. L., Glevitzky, M., Tit, D. M., Behl, T., Heghedűş-Mîndru, R. C., Zaha, D. C., ... & Bungău, S. (2021). The antimicrobial activity of honey and propolis extracts from the central region of Romania. Food Bioscience, 41, 101014. https://doi.org/10.1016/j.fbio.2021.101014.
  • Villacrés-Granda, I., Coello, D., Proaño, A., Ballesteros, I., Roubik, D. W., Jijón, G., ... & Alvarez-Suarez, J. M. (2021). Honey quality parameters, chemical composition and antimicrobial activity in twelve Ecuadorian stingless bees (Apidae: Apinae: Meliponini) tested against multiresistant human pathogens. LWT, 140, 110737. https://doi.org/10.1016/j.lwt.2020.110737.
  • Wang, L., Ning, F., Liu, T., Huang, X., Zhang, J., Liu, Y., ... & Luo, L. (2021). Physicochemical properties, chemical composition, and antioxidant activity of Dendropanax dentiger honey. LWT, 147, 111693. https://doi.org/10.1016/j.lwt.2021.111693.
  • Wilczyńska, A. (2014). Effect of filtration on colour, antioxidant activity and total phenolics of honey. LWT-Food Science and Technology, 57(2), 767-774. https://doi.org/10.1016/j.lwt.2014.01.034.

Determination of characteristics attributes of Siirt-Pervari honeys

Yıl 2023, Cilt: 27 Sayı: 3, 405 - 414, 27.09.2023
https://doi.org/10.29050/harranziraat.1189588

Öz

In this study, it was aimed to reveal the characteristic features of honey produced in Pervari district of Siirt province. For this purpose, ash, 5-hydroxymethylfurfural (HMF), total phenolic content, and antioxidant activity analyzes were conducted in honey collected from 20 different local producers. Moreover, sugar fractions of all samples were investigated using high performance liquid chromatography (HPLC). Honey samples were found to be compatible with the Turkish Food Codex Honey Communique (2020/7) in terms of ash amount (0.14-0.37%) and HMF (0.83-0.94 mg kg-1). The total phenolic content and antioxidant activity were detected as 19.59-30.93 mg gallic acid equivalent (GAE) 100 g-1 and 12.87-23.94 ascorbic acid equivalent (AAE) 100 g-1, respectively. The amount of sugar in honey was also compatible with the Turkish Food Codex Honey Communique (2020/7) and the largest sugar fraction was glucose (41.25-50.11%), followed by fructose (33.91-45.37%) and sucrose (3.27-4.70%). The results will provide a reference for the quality standard and to increase the visibility of Pervari honey in national and international markets.

Proje Numarası

17078

Kaynakça

  • Afrin, S., Giampieri, F., Cianciosi, D., Alvarez-Suarez, J. M., Bullon, B., Amici, A., ... & Battino, M. (2021). Strawberry tree honey in combination with 5-fluorouracil enhances chemosensitivity in human colon adenocarcinoma cells. Food and Chemical Toxicology, 156, 112484. https://doi.org/10.1016/j.fct.2021.112484.
  • Al-Farsi, M., Al-Belushi, S., Al-Amri, A., Al-Hadhrami, A., Al-Rusheidi, M., & Al-Alawi, A. (2018). Quality evaluation of Omani honey. Food Chemistry, 262, 162-167. https://doi.org/10.1016/j.foodchem.2018.04.104.
  • Almasaudi, S. (2021). The antibacterial activities of honey. Saudi Journal of Biological Sciences, 28(4), 2188-2196. https://doi.org/10.1016/j.sjbs.2020.10.017.
  • Alvarez-Suarez, J. M., Tulipani, S., Díaz, D., Estevez, Y., Romandini, S., Giampieri, F., ... & Battino, M. (2010). Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. Food and Chemical Toxicology, 48(8-9), 2490-2499. https://doi.org/10.1016/j.fct.2010.06.021.
  • Alves, A., Ramos, A., Gonçalves, M. M., Bernardo, M., & Mendes, B. (2013). Antioxidant activity, quality parameters and mineral content of Portuguese monofloral honeys. Journal of Food Composition and Analysis, 30(2), 130-138. https://doi.org/10.1016/j.jfca.2013.02.009.
  • Amran, N., & Abdul-Rahman, P. S. (2022). Differential proteome and functional analysis of NSCLC cell lines in response to Tualang honey treatment. Journal of Ethnopharmacology, 293, 115264. https://doi.org/10.1016/j.jep.2022.115264.
  • Anupama, D., Bhat, K. K., & Sapna, V. K. (2003). Sensory and physico-chemical properties of commercial samples of honey. Food research international, 36(2), 183-191. https://doi.org/10.1016/S0963-9969(02)00135-7.
  • Attanzio, A., Tesoriere, L., Allegra, M., & Livrea, M. A. (2016). Monofloral honeys by Sicilian black honeybee (Apis mellifera ssp. sicula) have high reducing power and antioxidant capacity. Heliyon, 2(11), e00193. https://doi.org/10.1016/j.heliyon.2016.e00193.
  • Başyiğit, B., Sağlam, H., Köroğlu, K., & Karaaslan, M. (2020). Compositional analysis, biological activity, and food protecting ability of ethanolic extract of Quercus infectoria gall. Journal of Food Processing and Preservation, 44(9), e14692. https://doi.org/10.1111/jfpp.14692.
  • Biluca, F. C., de Gois, J. S., Schulz, M., Braghini, F., Gonzaga, L. V., Maltez, H. F., ... & Fett, R. (2017). Phenolic compounds, antioxidant capacity and bioaccessibility of minerals of stingless bee honey (Meliponinae). Journal of Food Composition and Analysis, 63, 89-97. https://doi.org/10.1016/j.jfca.2017.07.039.
  • Biluca, F. C., da Silva, B., Caon, T., Mohr, E. T. B., Vieira, G. N., Gonzaga, L. V., ... & Costa, A. C. O. (2020). Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae). Food Research International, 129, 108756. https://doi.org/10.1016/j.foodres.2019.108756.
  • Bobis, O., Moise, A. R., Ballesteros, I., Reyes, E. S., Durán, S. S., Sánchez-Sánchez, J., ... & Alvarez-Suarez, J. M. (2020). Eucalyptus honey: Quality parameters, chemical composition and health-promoting properties. Food chemistry, 325, 126870. https://doi.org/10.1016/j.foodchem.2020.126870.
  • Bogdanov, S., Jurendic, T., Sieber, R., & Gallmann, P. (2008). Honey for nutrition and health: a review. Journal of the American college of Nutrition, 27(6), 677-689. https://doi.org/10.1080/07315724.2008.10719745.
  • Bogdanov, S. (2009). The book of honey. Bee product science, 46, 269-275.
  • Bueno-Costa, F. M., Zambiazi, R. C., Bohmer, B. W., Chaves, F. C., da Silva, W. P., Zanusso, J. T., & Dutra, I. (2016). Antibacterial and antioxidant activity of honeys from the state of Rio Grande do Sul, Brazil. LWT-Food Science and Technology, 65, 333-340. https://doi.org/10.1016/j.lwt.2015.08.018.
  • Can, Z., Yildiz, O., Sahin, H., Turumtay, E. A., Silici, S., & Kolayli, S. (2015). An investigation of Turkish honeys: their physico-chemical properties, antioxidant capacities and phenolic profiles. Food chemistry, 180, 133-141. https://doi.org/10.1016/j.foodchem.2015.02.024.
  • Čanadanović-Brunet, J., Ćetković, G., Šaponjac, V. T., Stajčić, S., Vulić, J., Djilas, S., ... & Popović, B. (2014). Evaluation of phenolic content, antioxidant activity and sensory characteristics of Serbian honey-based product. Industrial Crops and Products, 62, 1-7. https://doi.org/10.1016/j.indcrop.2014.08.009.
  • Chakir, A., Romane, A., Marcazzan, G. L., & Ferrazzi, P. (2016). Physicochemical properties of some honeys produced from different plants in Morocco. Arabian Journal of Chemistry, 9, S946-S954. https://doi.org/10.1016/j.arabjc.2011.10.013.
  • Chalcoff, V. R., Aizen, M. A., & Galetto, L. (2006). Nectar concentration and composition of 26 species from the temperate forest of South America. Annals of botany, 97(3), 413-421. https://doi.org/10.1093/aob/mcj043.
  • Corbet, S. A. (2003). Nectar sugar content: estimating standing crop and secretion rate in the field. Apidologie, 34(1), 1-10. https://doi.org/10.1051/apido:2002049.
  • Çimen, S. (2021). Bala farklı oranlarda mısır şurubu katılarak yapılan tağşişin FTIR-ATR spektroskopisi ile belirlenmesi. Yükseklisans Tezi, Fen Bilimleri Enstitüsü, Manisa Celal Bayar Üniversitesi, Manisa, 149s.
  • da Silva, P. M., Gauche, C., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2016). Honey: Chemical composition, stability and authenticity. Food chemistry, 196, 309-323. https://doi.org/10.1016/j.foodchem.2015.09.051.
  • de Sousa, J. M. B., de Souza, E. L., Marques, G., de Toledo Benassi, M., Gullón, B., Pintado, M. M., & Magnani, M. (2016). Sugar profile, physicochemical and sensory aspects of monofloral honeys produced by different stingless bee species in Brazilian semi-arid region. LWT-Food Science and Technology, 65, 645-651. https://doi.org/10.1016/j.lwt.2015.08.058.
  • do Nascimento, K. S., Sattler, J. A. G., Macedo, L. F. L., González, C. V. S., de Melo, I. L. P., da Silva Araújo, E., ... & de Almeida-Muradian, L. B. (2018). Phenolic compounds, antioxidant capacity and physicochemical properties of Brazilian Apis mellifera honeys. LWT, 91, 85-94. https://doi.org/10.1016/j.lwt.2018.01.016.
  • El-Haskoury, R., Kriaa, W., Lyoussi, B., & Makni, M. (2018). Ceratonia siliqua honeys from Morocco: Physicochemical properties, mineral contents, and antioxidant activities. Journal of food and drug analysis, 26(1), 67-73. https://doi.org/10.1016/j.jfda.2016.11.016.
  • El Sohaimy, S. A., Masry, S. H. D., & Shehata, M. G. (2015). Physicochemical characteristics of honey from different origins. Annals of Agricultural Sciences, 60(2), 279-287. https://doi.org/10.1016/j.aoas.2015.10.015.
  • Escuredo, O., Míguez, M., Fernández-González, M., & Seijo, M. C. (2013). Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food chemistry, 138(2-3), 851-856. https://doi.org/10.1016/j.foodchem.2012.11.015.
  • Gallardo-Guerrero, L., Perez-Galvez, A., Aranda, E., Mınguez-Mosquera, M. I., And Hornero-Mendez, D. (2010). Physcochemical and Microbiological Characterization of Dehydration Processing of Red Pepper Fruits for Paprika Production. LWT-Food Science and Technology, 43: 1359-1367. https://doi.org/10.1016/j.lwt.2010.04.015.
  • Karabagias, I. K., Badeka, A., Kontakos, S., Karabournioti, S., & Kontominas, M. G. (2014). Characterisation and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters and chemometrics. Food chemistry, 146, 548-557. https://doi.org/10.1016/j.foodchem.2013.09.105.
  • Küçük, M., Kolaylı, S., Karaoğlu, Ş., Ulusoy, E., Baltacı, C., & Candan, F. (2007). Biological activities and chemical composition of three honeys of different types from Anatolia. Food chemistry, 100(2), 526-534. https://doi.org/10.1016/j.foodchem.2005.10.010.
  • Majtan, J., Bucekova, M., Kafantaris, I., Szweda, P., Hammer, K., & Mossialos, D. (2021). Honey antibacterial activity: A neglected aspect of honey quality assurance as functional food. Trends in Food Science & Technology, 118, 870-886. https://doi.org/10.1016/j.tifs.2021.11.012.
  • Meda, A., Lamien, C. E., Romito, M., Millogo, J., & Nacoulma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food chemistry, 91(3), 571-577. https://doi.org/10.1016/j.foodchem.2004.10.006.
  • Menzel, R., & Muller, U. (1996). Learning and memory in honeybees: from behavior to neural substrates. Annual review of neuroscience, 19(1), 379-404.
  • Menzel, R., Greggers, U., Smith, A., Berger, S., Brandt, R., Brunke, S., ... & Watzl, S. (2005). Honey bees navigate according to a map-like spatial memory. Proceedings of the National Academy of Sciences, 102(8), 3040-3045. https://doi.org/10.1073/pnas.04085501.
  • Mračević, S. Đ., Krstić, M., Lolić, A., & Ražić, S. (2020). Comparative study of the chemical composition and biological potential of honey from different regions of Serbia. Microchemical Journal, 152, 104420. https://doi.org/10.1016/j.microc.2019.104420.
  • Nicewicz, A. W., Nicewicz, Ł., & Pawłowska, P. (2021). Antioxidant capacity of honey from the urban apiary: A comparison with honey from the rural apiary. Scientific Reports, 11(1), 1-8. https://doi.org/10.1038/s41598-021-89178-4.
  • Noor, N., Sarfraz, R. A., Ali, S., & Shahid, M. (2014). Antitumour and antioxidant potential of some selected Pakistani honeys. Food Chemistry, 143, 362-366. https://doi.org/10.1016/j.foodchem.2013.07.084.
  • Ouchemoukh, S., Schweitzer, P., Bey, M. B., Djoudad-Kadji, H., & Louaileche, H. (2010). HPLC sugar profiles of Algerian honeys. Food chemistry, 121(2), 561-568. https://doi.org/10.1016/j.foodchem.2009.12.047.
  • Pasias, I. N., Kiriakou, I. K., & Proestos, C. (2017). HMF and diastase activity in honeys: A fully validated approach and a chemometric analysis for identification of honey freshness and adulteration. Food Chemistry, 229, 425-431. https://doi.org/10.1016/j.foodchem.2017.02.084.
  • Sandoz, J. C., Roger, B., & Pham-Delegue, M. H. (1995). Olfactory learning and memory in the honeybee: comparison of different classical conditioning procedures of the proboscis extension response. Comptes Rendus de L'academie des sciences. Serie III, Sciences de la vie, 318(7), 749-755.
  • Saxena, S., Gautam, S., & Sharma, A. (2010). Physical, biochemical and antioxidant properties of some Indian honeys. Food chemistry, 118(2), 391-397. https://doi.org/10.1016/j.foodchem.2009.05.001.
  • Scepankova, H., Saraiva, J. A., & Estevinho, L. M. (2017). Honey health benefits and uses in medicine. In Bee products-Chemical and biological properties (pp. 83-96). Springer, Cham. http://doi.org/10.1007/978-3-319-59689-1_4.
  • Scheiner, R., Page, R. E., & Erber, J. (2004). Sucrose responsiveness and behavioral plasticity in honey bees (Apis mellifera). Apidologie, 35(2), 133-142. https://doi.org/10.1051/apido:2004001.
  • Silici, S., Sagdic, O., & Ekici, L. (2010). Total phenolic content, antiradical, antioxidant and antimicrobial activities of Rhododendron honeys. Food Chemistry, 121(1), 238-243. https://doi.org/10.1016/j.foodchem.2009.11.078.
  • Singleton, V., And Rossi, J. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3): 144–158.
  • Sousa, J. M., De Souza, E. L., Marques, G., Meireles, B., de Magalhães Cordeiro, Â. T., Gullón, B., ... & Magnani, M. (2016). Polyphenolic profile and antioxidant and antibacterial activities of monofloral honeys produced by Meliponini in the Brazilian semiarid region. Food Research International, 84, 61-68. https://doi.org/10.1016/j.foodres.2016.03.012.
  • Spilioti, E., Jaakkola, M., Tolonen, T., Lipponen, M., Virtanen, V., Chinou, I., ... & Moutsatsou, P. (2014). Phenolic acid composition, antiatherogenic and anticancer potential of honeys derived from various regions in Greece. PloS one, 9(4), e94860. https://doi.org/10.1371/journal.pone.0094860.
  • Tornuk, F., Karaman, S., Ozturk, I., Toker, O. S., Tastemur, B., Sagdic, O., ... & Kayacier, A. (2013). Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile. Industrial Crops and Products, 46, 124-131. https://doi.org/10.1016/j.indcrop.2012.12.042.
  • Valdés-Silverio, L. A., Iturralde, G., García-Tenesaca, M., Paredes-Moreta, J., Narváez-Narváez, D. A., Rojas-Carrillo, M., ... & Alvarez-Suarez, J. M. (2018). Physicochemical parameters, chemical composition, antioxidant capacity, microbial contamination and antimicrobial activity of Eucalyptus honey from the Andean region of Ecuador. Journal of Apicultural Research, 57(3), 382-394. https://doi.org/10.1080/00218839.2018.1426349.
  • Vică, M. L., Glevitzky, M., Tit, D. M., Behl, T., Heghedűş-Mîndru, R. C., Zaha, D. C., ... & Bungău, S. (2021). The antimicrobial activity of honey and propolis extracts from the central region of Romania. Food Bioscience, 41, 101014. https://doi.org/10.1016/j.fbio.2021.101014.
  • Villacrés-Granda, I., Coello, D., Proaño, A., Ballesteros, I., Roubik, D. W., Jijón, G., ... & Alvarez-Suarez, J. M. (2021). Honey quality parameters, chemical composition and antimicrobial activity in twelve Ecuadorian stingless bees (Apidae: Apinae: Meliponini) tested against multiresistant human pathogens. LWT, 140, 110737. https://doi.org/10.1016/j.lwt.2020.110737.
  • Wang, L., Ning, F., Liu, T., Huang, X., Zhang, J., Liu, Y., ... & Luo, L. (2021). Physicochemical properties, chemical composition, and antioxidant activity of Dendropanax dentiger honey. LWT, 147, 111693. https://doi.org/10.1016/j.lwt.2021.111693.
  • Wilczyńska, A. (2014). Effect of filtration on colour, antioxidant activity and total phenolics of honey. LWT-Food Science and Technology, 57(2), 767-774. https://doi.org/10.1016/j.lwt.2014.01.034.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Bahar Gündüz 0000-0002-1326-406X

Kamile Bayrak Akay 0000-0001-7976-377X

Mehmet Şükrü Karakuş 0000-0002-1805-8206

Merve Akalan 0000-0002-3926-245X

Melike Yücetepe 0000-0002-9581-225X

Asliye Karaaslan 0000-0002-3834-0647

Bülent Başyiğit 0000-0002-6617-1836

Fatih Mehmet Yılmaz 0000-0002-1370-1231

Mehmet Karaaslan 0000-0001-8097-9535

Proje Numarası 17078
Erken Görünüm Tarihi 26 Eylül 2023
Yayımlanma Tarihi 27 Eylül 2023
Gönderilme Tarihi 15 Ekim 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 3

Kaynak Göster

APA Gündüz, B., Bayrak Akay, K., Karakuş, M. Ş., Akalan, M., vd. (2023). Siirt-Pervari yöresinden toplanan balların fizikokimyasal özelliklerinin belirlenmesi. Harran Tarım Ve Gıda Bilimleri Dergisi, 27(3), 405-414. https://doi.org/10.29050/harranziraat.1189588

Derginin Tarandığı İndeksler

13435  19617   22065  13436  134401344513449 13439 13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.