Research Article
BibTex RIS Cite

Year 2025, Volume: 9 Issue: 2, 452 - 463, 26.06.2025
https://doi.org/10.31015/2025.2.19

Abstract

Project Number

113O199

References

  • Adıgüzel, P., Nyirahabimana, F., Solmaz, I. (2022). Recent developments of grafting in Cucurbitaceae. In: Agricultural Practices and Sustainable Management in Türkiye. 9 (İKSAD Basımevi, Ankara, 214-241).
  • Alan, O., Ozdemir, N., Gunem, Y. (2007). Effect of grafting on watermelon plant growth, yield and quality. Journal of Agronomy, 6, 362-365. https://doi.org/10.3923/ja.2007.362.365
  • Alan, O., Sen, F., Duzyaman, E. (2017). How growing cycles affect plant growth and yield of grafted watermelon combinations. Fresenius Environ Bulletin, 26 (6), 4214-4221. ISSN 1018-4619. Freising, Germany.
  • Alexopoulos, A. A., Kondylis, A., Passam, H. C. (2007). Fruit yield and quality of watermelon in relation to grafting. Journal of Food Agriculture & Enviroment, 5 (1), 178-179. ISSN (Electronic): 1459-0263
  • Aras, V. (2020). Hibrit karpuz tohum üretiminde farklı anaçlar üzerine aşılamanın tohum verim ve kalitesine etkileri. Institute of Applied Sciences, Cukurova University, Adana, Türkiye, 209 pp.
  • Atakul, Z. (2024). Anter kültürü uygulamalarinin sitron karpuzunda (Citrullus lanatus var. citroides) haploid bitki eldesi üzerine etkileri. Institute of Applied Sciences, Selcuk University, Konya, Türkiye, 47 pp.
  • Aydin, A., Yetisir, H., Basak, H., Turan, M., Tuna, M. (2022). Rootstock potential of auto and Allotetraploid Citron [Citrullus lanatus var. citroides (L. H. Bailey) Mansf.] for Watermelon [Citrullus lanatus var. lanatus (Thunb.) Matsum. & Nakai] under hydroponic conditions: plant growth and some physiological characteristics. International Journal of Agriculture, Environment and Food Sciences, 6 (4), 648-659.
  • Bekhradi, F., Kashi, A., Delshad, M. (2011). Effect of three cucurbit rootstocks on vegetative and yield of ‘Charleston Grey’ watermelon. International Journal of Plant Production, 5 (2), 105-109. ISSN: 1735-6814 (Print), 1735-8043 (Online).
  • Bianchi, G,. Rizzolo, A., Grassi, M., Provenzi, L., Scalzo, R. L. (2018). External maturity indicators, carotenoid and sugar compositions and volatile patterns in ‘Cuoredolce®’ and ‘Rugby’ mini-watermelon (Citrullus lanatus (Thunb) Matsumura & Nakai) varieties in relation of ripening degree at harvest. Postharvest Biology and Technology, 136, 1-11. ISSN: 0925-5214.
  • Bultosa, G., Molapisi, M., Tselaesele, N., Kobue-Lekalake, R., Desse Haki, G., Makhabu, S., Sekwati-Monang, B., Seifu, E., Nthoiwa, G. P. (2020). Plant-based traditional foods and beverages of Ramotswa village, Botswana. J. Ethnic Foods, 7. https://doi.org/ 10.1186/s42779-019-0041-3
  • Çandır, E., Yetisir, H., Karaca, F., Ustun, D. (2013). Phytochemical characteristics of grafted watermelon on different bottle gourds (Lagenaria siceraria) collected from the Mediterranean region of Turkey. Turkish Journal of Agriculture and Forestry, 37, 443-456. https://doi.org/10.3906/tar-1207-21.
  • Chomicki, G., Schaefer, H., Renner, S. S. (2020). Origin and domestication of Cucurbitaceae crops: Insights from phylogenies, genomics and archaeology. N. Phytol., 226, 1240–1255.
  • Cohen, R., Tyutyunik, J., Fallik, E., Oka, Y., Tadmor, Y., Edelstein, M. (2014). Phytopathological evaluation of exotic watermelon germplasm as a basis for rootstock breeding. Scientia Horticulturae, 165, 203-210. http://dx.doi.org/10.1016/j.scienta.2013.11.007
  • Colla, G., Rouphael, Y., Cardarelli, M., Rea, E. (2006). Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral composition of grafted watermelon plants. HortScience, 4, 622-627. https://doi.org/10.21273/HORTSCI.41.3.622
  • Colla, G., Suãrez, C. M. C., Cardarelli, M., Rouphael, Y. (2010). Improving nitrogen use efficiency in melon by grafting. HortScience, 45, 559-565. https://doi.org/10.21273/HORTSCI.45.4.559.
  • Colla, G., Rouphael, Y., Mirabelli, C., Cardarelli, M. (2011). Nitrogen‐use efficiency traits of mini‐watermelon in response to grafting and nitrogen‐fertilization doses. Journal of Plant Nutrition and Soil Science, 174 (6), 933-941. https://doi.org/10.1002/jpln.201000325
  • Cucu, T., Huvaere, K., Van Den Bergh, M. A., Vinkx, C., Van Loco, J. (2012). A Simple and fast HPLC method to determine lycopene in foods. Food Analytical Methods, 5, 1221-1228. https://doi.org/10.1007/s12161-011-9354-6
  • Cushman, K. E., Huan, J. (2008). Performance of four triploid watermelon cultivars grafted onto five rootstock genotypes: Yield and fruit quality under commercial growing conditions. Acta Horticulturae, 782, 335-337. https://doi.org/10.1007/s12161-011-9354-6
  • Davis, A. R., Perkins-Veazie, P., 2005-2006. Rootstock effects on plant vigor and watermelon fruit quality. Cucurbit Genetics Cooperative Report, 28, 39-42.
  • Davis, A. R., Perkins-Veazie, P., Hassell, R., King, S. R., Zhang, X. (2008). Grafting effects on vegetable quality. HortScience, 43 (6), 1670-1672. https://doi.org/10.21273/HORTSCI.43.6.1670
  • Edelstein, M., Cohen, R., Burger, Y., Shriber, S. (1999). Integrated management of sudden wilt in melons, caused by Monosporascus cannonballus, using grafting and reduced rates of metybromide. Plant Disease, 83 (12), 1442-1445. https://doi.org/10.1094/PDIS.1999.83.12.1142
  • Edelstein, M., Tyutyunik, J., Fallik, E., Meir, A., Tadmor, Y., et al. (2014). Horticultural evaluation of exotic watermelon germplasm as potential rootstocks. Scientia Horticulturae, 165, 196-202. https://doi.org/10.1016/j.scienta.2013.11.010
  • Elmstrom, G. W., Davis, P. L. (1981). Sugars in Developing and Mature Fruits of Several Watermelon Cultivars1, 2. Journal of the American Society for Horticultural Science, 10 6(3), 330-333. ISSN: 0003-1062. https://doi.org/10.21273/JASHS.106.3.330
  • FAO (2023). Food and Agriculture Organization of the United Nations. Retrieved in February, 26, 2025 from https://www.fao.org/faostat/en/#data/QCL
  • Fredes, A., Rosello, S., Beltrán, J., Cebolla-Cornejo, J., Pérez-de-Castro, A., Gisbert, C., Picó, M. B. (2016). Fruit quality assessment of watermelons grafted onto citron melon rootstock. Jornal of the Science of Food and Agriculture, 97, 1646-1655. https://doi.org/10.1002/jsfa.7915
  • Goldschmidt, E. E. (2014). Plant Grafting: New Mechanisms, Evolutionary Implications, Frontiers in Plant Science, 5, pp 727. https://doi.org/10.3389/fpls.2014.00727
  • Guler, Z., Candir, E., Yetisir, H., Karaca, F., Solmaz, I. (2014). Volatile organic compounds in watermelon (Citrullus lanatus) grafted onto 21 local and two commercial bottle gourd (Lagenaria siceraria) rootstocks. The Journal of Horticultural Science and Biotechnology, 89 (4), 448-452. https://doi.org/10.1080/14620316.2014.11513105
  • Han, J. H., Kim, J. Y., Hwang, H. S., Kim, B. S. (2003). Evaluation of F2 and F3 generation of crosses designed for breeding rootstocks with multiple resistance of bacterial wilt and Phytophthora root rot. XIth EUCARPIA Meeting on Genetics and Breeding of Capsicum and Eggplant, Antalya-Türkiye, 284-288.
  • Hassell, R. L., Memmott, F., Liere, D. G. (2008). Grafting methods for watermelon production. HortScience, 43, 1677-1679. https://doi.org/10.21273/HORTSCI.43.6.1677
  • Hu, C. M., Zhu, Y. L., Yang, L. F., Chen, S. F., Huang, Y. M. (2006). Comparison of photosynthetic characteristics of grafted and own-root seedling of cucumber under low temperature circumstances. Acta Botanica Boreali-Occidentalia Sinica, 26, 247-253. Clc Number: Q945.78 S642.2
  • Huang, Y., Zhao, L., Kong, Q., Cheng, F., Niu, M. et al. (2016). Comprehensive mineral nutrition analysis of watermelon grafted onto two different rootstocks. Horticultural Plant Journal, 2 (2), 105-113. https://doi.org/10.1016/j.hpj.2016.06.003
  • Huh, Y. C., Om, Y. H., Lee, J. M. (2002). Utilization of citrullus germplasm with resistance to fusarium wilt (Fusarium oxysporum f. sp. niveum) for watermelon rootstocks. Acta Horticulturae, 588, 127-132. https://doi.org/10.17660/ActaHortic.2002.588.18
  • Huitron-Ramirez, M. V., Ricardez-Salinas, M., Camacho-Ferre, F. (2009). Influence of grafted watermelon plant density on yield and quality in soil infested with melon necrotic spot virus. HortScience, 44, 1838-1841. https://doi.org/10.21273/HORTSCI.44.7.1838
  • Hussein, S., Sari, N. (2020). Effects of different rootstocks on seed yield and quality of triploid watermelon grown in greenhouse. Acta Horticulturae, 1282, 67-74. https://doi.org/10.17660/ActaHortic.2020.1282.12
  • Karaagaç, O., Balkaya, A. (2013). Interspecific hybridization and hybrid seed yield of winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.) lines for rootstock breeding. Scientia Horticulturae, 149, 9-12. https://doi.org/10.1016/j.scienta.2012.10.021
  • Karaca, F., Yetişir, H., Solmaz, I., Candır, E., Kurt, S. et al. (2012). Rootstock potential of Turkish Lagenaria siceraria germplasm for watermelon: Plant growth, yield and quality. Turkish Journal of Agriculture and Forestry, 36 (2), 167-177. https://doi.org/10.3906/tar-1101-1716
  • Keinath, A. P., Hassel, R. L. (2014). Control of Fusarium Wilt of Watermelon by Grafting onto Bottlegourd or Interspecific Hybrid Squash Despite Colonization of Rootstocks by Fusarium. Plant Disease, 98 (2), 255-266. https://doi.org/10.1094/PDIS-01-13-0100-RE
  • King, S. R., Davis, A. R., Zhang, X., Crosby, K. (2010). Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Scientia Horticulturae, 127, 106-111. https://doi.org/10.1016/j.scienta.2010.08.001
  • Kombo, M. D., Sari, N. (2019). Rootstock effects on seed yield and quality in watermelon. Horticulture, Environment, and Biotechnology, 60, 303-312. https://doi.org/10.1007/s13580-019-00131-x
  • Kong, Q., Chen, J., Liu, Y., Ma, Y., Liu, P., Wu, S., Huang, Y., Bie, Z. (2014). Genetic diversity of Cucurbita rootstock germplasm as assessed using simple sequence repeat markers. Scientia Horticulturae, 175, 150-155. https://doi.org/10.1016/j.scienta.2014.06.009
  • Kumar, C. S., Mythily, R., Chandraju, S. (2012). Studies on sugars extracted from watermelon (Citrullus lanatus) rind, a remedy for related waste and its management. International Journal of Chemical and Analytical Science, 3 (8), 1527-1529. ISSN: 0976-1206
  • Kyriacou, M. C., Rouphael, Y., Colla, G., Zrenner, R., Schwarz, D. (2017). Vegetable grafting: The implications of a growing agronomic imperative for vegetable fruit quality and nutritive value. Frontiers in Plant Science, 8, 741. https://doi.org/10.3389/fpls.2017.00741
  • Laghetti, G., Hammer, K. (2007). The corsican citron melon (Citrullus lanatus (Thunb.) Matsum. et Nakai subsp. lanatus var. citroides (Bailey) Mansf. Ex Greb.) a traditional and neglected crop. Genetic Resources and Crop Evolution, 54, 913-916. https://doi.org/10.1007/s10722-007-9220-y
  • Liu, H. Y., Zhu, Z. J., Diao, M., Guo, Z. P. (2006). Characteristic of the sugar metabolism in leaves and fruits of grafted watermelon during fruit development. Plant Physiolgy Communication, 42, 835-840.
  • Lopez-Galarza, S., San Bautista, A., Perez, D. M. (2004). Effects of grafting and cytokinin-induced fruit setting on color and sugar-content traits in glasshouse-grown triploid watermelon. Jornal of the Horticultural Science and Biotechnolgy, 79, 971-976. https://doi.org/10.1080/14620316.2004.11511875
  • Lv, P., Li, N., Liu, H., Gu, H., Zhao, W. (2015). Changes in carotenoid profiles and in the expression pattern of the genes in carotenoid metabolisms during fruit development and ripening in four watermelon cultivars. Food Chemistry, 174, 52-59. https://doi.org/10.1016/j.foodchem.2014.11.022
  • Mandizvo, T., Odindo, A.O., Mashilo, J. (2021). Citron watermelon potential to improve crop diversification and reduce negative impacts of climate change. Sustainability, 13. https://doi.org/10.3390/su13042269.
  • Mandizvo, T., Odindo, A. O., Mashilo, J., Magwaza, L. S. (2022). Drought tolerance assessment of citron watermelon (Citrullus lanatus var. citroides (L.H. Bailey) Mansf. Ex Greb.) Accessions based on morphological and physiological traits. Plant Physiol. Biochem., 80, 106–123. https://doi.org/10.1016/j.plaphy.2022.03.037
  • Maurya, D., Pandey, A. K., Kumar, V., Dubey, S., Prakash, V. (2019). Grafting techniques in vegetable crops: A review. International Journal of Chemical Studies, 7 (2), 1664-1672. E-ISSN: 2321–4902
  • Metin, D., Atakul, Z., Kurtar, E. S., Seymen, M., Alan, A. R., Çelebi Toprak, F. (2024). Callogenesis, embryogenesis, and plantlet initiation in citron watermelon (Citrullus lanatus var. citroides) via anther and unfertilized ovary culture. Scientia Horticulturae, 337 (1), 113493. https://doi.org/10.1016/j.scienta.2024.113493.
  • Miguel, A., Maroto, J. V., San Bautista, A., Baixauli, C., Cebolla, V., Pascual, B., López, S., Guardiola, J. L. (2004). The grafting of triploid watermelon is an advantageous alternative to soil fumigation by methyl bromide for control of Fusarium wilt. Scientia Horticulturae, 103, 9-17. https://doi.org/10.1016/j.scienta.2004.04.007
  • Mohamed, F. H., Abd El-Hamed, K. E., Elwan, M. W. M., Hussein, M. N. E. (2014). Evaluation of different grafting methods and rootstocks in watermelon grown in Egypt. Scientia Horticulturae, 168, 145-150. https://doi.org/10.1016/j.scienta.2014.01.029
  • Nkoana, D. K., Mashilo, J., Shimelis, H. ve Ngwepe, R. M. (2022). Nutritional, phytochemical compositions and natural therapeutic values of citron watermelon (Citrullus lanatus var. citroides): A Review. South African Journal of Botany, 145, 65-77.
  • Ozmen, S., Kanber, R., Sari, N., Unlu, M. (2015). The effects of deficit irrigation on nitrogen consumption, yield, and quality in drip irrigated grafted and ungrafted watermelon. Journal of Integrative Agriculture, 14 (5), 966-976. https://doi.org/10.1016/S2095-3119(14)60870-4
  • Passam, H. (2003). Use of grafting makes comeback. Fruits and Vegetable Technologies, 3 (4), 7-9.
  • Perkins-Veazie, P., Collins, J. K., Davis, A. R., Roberts, W. (2006). Carotenoid content of 50 watermelon cultivars. Journal of Agricultural and Food Chemistry, 54 (7), 2593-2597. https://doi.org/10.1021/jf052066p
  • Perkins-Veazie, P., Zhang, X., Collins, J. K., Wu, G., Lu, G. et al. (2008). Watermelon fruit content of amino acids and carotenoids increases with grafting. Journal of The Science of Food and Agriculture, (Submitted manuscript).
  • Petropoulos, S. A., Olympios, C., Ropokis, A., Vlachou, G., Ntatsi, G. et al. (2014). Fruit volatiles, quality and yield of watermelon as affected by grafting. Journal of Agricultural Science and Technolgy, 16, 873-885. http://jast.modares.ac.ir/article-23-7623-en.html
  • Proietti, S., Rouphael, Y., Colla, G., Cardarelli, M., Agazio, M. D. et al. (2008). Fruit quality of mini watermelon as affected by grafting and irrigation regimes. Journal of The Science of Food and Agriculture, 88, 1107-1114. https://doi.org/10.1002/jsfa.3207
  • Rivero, R. M., Rui, J. M., Romero, L. (2003). Role of grafting in horticultural plants under stress conditions. Food, Agriulture and Environment, 1, 70-74.
  • Rouphael, Y., Cardarelli, M., Rea, E., Colla, G. (2008). Grafting of cucumber as a means to minimize copper toxicity. Environmental and Experimental Botany, 63, 49-58. https://doi.org/10.1016/j.envexpbot.2007.10.015
  • Rouphael, Y., Schwarz, D., Krumbein, A., Colla, G. (2010). Impact of grafting on product quality of fruit vegetables. Science Horticulture, 127, 172-179. https://doi.org/10.1016/j.scienta.2010.09.001
  • Sakata, Y., Ohara, T., Sugiyama, M. (2007). The history and present state of the grafting of cucurbitaceous vegetables in Japan. Acta Horticultarae, 731, 159-170. https://doi.org/10.17660/ActaHortic.2007.731.22
  • Sari, N., Yetisir, H., Yucel, S., Dundar, O. (1998). Effects of grafted seedling on yield and fruit quality in watermelon production. TUBITAK TOGTAG/TARP, project number: 2410.
  • Soteriou, G. A., Kyriacou, M. C., Siomos, A. S., Gerasopoulos, D. (2014). Evolution of watermelon fruit physicochemical and phytochemical composition during ripening as affected by grafting. Food Chemistry, 165, 282-289. https://doi.org/10.1016/j.foodchem.2014.04.120
  • Tadmor, Y., King, S., Levi, A., Davis, A., Meir, A. et al. (2005). Comparative fruit colouration in watermelon and tomato. Food Research International, 38 (8-9), 837-841. https://doi.org/10.1016/j.foodres.2004.07.011
  • Thies, J. A., Ariss, J. J., Hassell, R. L., Olson, S., Kousik, C. S. et al. (2010). Grafting for management of southern root-knot nematode, Meloidogyne incognita, in watermelon. Plant Disease, 94, 1195-1199. https://doi.org/10.1094/PDIS-09-09-0640
  • Thies, J.A., Arris, J. J., Hassel, R. L., Levi, A. (2012). Resistant rootstocks for managing root-knot nematods (Meloidogyne incognita) in grafted watermelon and melon. In: Xth EUCARPIA meeting on genetics and breeding of Cucurbitaceae, Antalya, Türkiye. 202-211.
  • Thies, J. A., Ariss, J. J., Hassell, R. L., Buckner, S., Levi, A. (2015). Accessions of Citrullus lanatus var. citroides are valuable rootstocks for grafted watermelon in fields infested with root-knot nematodes. HortScience, 50, 4-8. https://doi.org/10.21273/HORTSCI.50.1.4
  • Toporek, S. M., Keinath, A. P. (2020). Evaluating Cucurbit Rootstocks to Prevent Disease Caused by Pythium aphanidermatum and P. myriotylum on Watermelon. Plant Disease, 104, 3019-3025. https://doi.org/10.1094/PDIS-03-20-0474-RE
  • Turhan, A., Ozmen, N., Kuscu, H., Serbeci, M. S., Seniz, V. (2012). Influence of rootstocks on yield and fruit characteristics and quality of watermelon. Horticulture, Environment and Biotechnology, 53, 336-341. https://doi.org/10.1007/s13580-012-0034-2
  • Yativ, M., Harary, I., Wolf, S. (2010). Sucrose accumulation in watermelon fruits: Genetic variation and biochemical analysis. Journal of Plant Physiolgy, 167, 589-596. https://doi.org/10.1016/j.jplph.2009.11.009
  • Yavuz, D., Seymen, M., Süheri, S., Yavuz, N., Türkmen, Ö., Kurtar, E. S. (2020). How do rootstocks of citron watermelon (Citrullus lanatus var. citroides) affect the yield and quality of watermelon under deficit irrigation? Agricultural Water Management, 241, 106351.
  • Yetisir, H., Sari, N. (2003). Effect of different rootstocks on plant growth, yield and quality of watermelon. Australian Journal of Experimental Agriculture, 43, 1269-1274. https://doi.org/10.1071/EA02095
  • Yetisir, H., Sari, N., Yucel, S. (2003). Rootstock resistance to Fusarium wilt and effect on watermelon fruit yield and quality. Phytoparsitica, 31, 163-169. https://doi.org/10.1007/BF02980786
  • Yetisir, H., Sari, N., Aktas, H., Karaman, C., Abak, K. (2006). Effect of different substrates on plant growth, yield and quality of watermelon grown in soilless culture. American Eurasian Journal of Agriulture and Environmental Science, 1, 113-118.
  • Yetisir, H., Kurt, S., Sari, N., Tok, M. F. (2007). Rootstock potential of Turkish Lagenaria siceraria germplasm for watermelon: Plant growth, graft compatibility and resistance to Fusarium. Turkish Journal of Agriculture and Forestry, 31, 381-388. eISSN: 1303-6173
  • Yetisir, H., Erturk, E., Guler, Z., Kurt, S., Solmaz, I. (2010). Determination of rootstock potential of bottle gourd (Lagenaria siceraria) collected from Mediterranean region for watermelon regarding yield and quality. Final report of Project TOVAG 106O650, The Scientific and Technical Research Council of Turkey, Ankara, 98.
  • Wehner, T. C. (2008). Watermelon In: Handbook of 135 Plant Breeding; Vegetables I: Asteraceae, Brassicaceae, Chenopodiaceae, and Cucurbitaceae. Springer Science+ Business LLC, New York, NY, 381-418. ISBN: 978-0-387-30443-4

The rootstock potential of Citron (Citrullus amarus) for watermelon

Year 2025, Volume: 9 Issue: 2, 452 - 463, 26.06.2025
https://doi.org/10.31015/2025.2.19

Abstract

Nowadays, global warming, abiotic and biotic stress factors pose significant challenges to the planet. Based on the increase in the population, the crop production of most agriculturally, economically, and nutritionally important crops as well as watermelon should be increased to their maximum. Grafting is a horticultural method by which the plant tissues are connected to enable the plants to continue growing together. It is usable technique to develop several horticultural traits in watermelon production such as yield and fruit quality and quantity. The main purpose of this study was to analyze the rootstock potential of citron (Citrullus amarus) genotypes for watermelon in terms of total yield, fruit characteristics and fruit quality (sugar and carotenoid contents). This study was conducted in the open field under low tunnel conditions within two successive years in Adana, Türkiye. The 11 Citrullus amarus genotypes (Kar 234, Kar 324, Kar 326, Kar 327, Kar 328, Kar 351, Kar 374, Kar 375, Kar 376, G 38, and G 40) were used as rootstocks and Crimson Tide F1 was scion. Commercial rootstocks: Maximus a Cucurbita hybrid rootstock (Cucurbita maxima × Cucurbita moschata) and Argentario (Lagenaria siceraria) were utilized for comparison, and non-grafted Crimson Tide was considered as a control group. According to the results, plants grafted onto C. amarus genotypes produced the highest total yield compared to the control group, but lower than to the plants grafted onto commercial rootstocks. All fruit measurement values of plants grafted onto commercial rootstocks resulted higher or similar than plants grafted onto C. amarus. It was determined that using C. amarus rootstocks positively affected fruit sugar content, however the amount of total lycopene and carotenoid content varied among genotypes. Kar 328, Kar 234 and Kar 351 were found to be promising genotypes as rootstock in terms of total soluble solids, total lycopene, total sugar, and total carotenoid contents respectively. In conclusion citron genotypes could be applied as an alternative rootstock for watermelon grafting program.

Supporting Institution

TUBİTAK

Project Number

113O199

Thanks

We would like to thanks Antalya Tarim Seed and Seedling Company for their assistance to produce grafted seedlings, and Dr. Mehmet Ali Saridas for kindly support in statistical analysis.

References

  • Adıgüzel, P., Nyirahabimana, F., Solmaz, I. (2022). Recent developments of grafting in Cucurbitaceae. In: Agricultural Practices and Sustainable Management in Türkiye. 9 (İKSAD Basımevi, Ankara, 214-241).
  • Alan, O., Ozdemir, N., Gunem, Y. (2007). Effect of grafting on watermelon plant growth, yield and quality. Journal of Agronomy, 6, 362-365. https://doi.org/10.3923/ja.2007.362.365
  • Alan, O., Sen, F., Duzyaman, E. (2017). How growing cycles affect plant growth and yield of grafted watermelon combinations. Fresenius Environ Bulletin, 26 (6), 4214-4221. ISSN 1018-4619. Freising, Germany.
  • Alexopoulos, A. A., Kondylis, A., Passam, H. C. (2007). Fruit yield and quality of watermelon in relation to grafting. Journal of Food Agriculture & Enviroment, 5 (1), 178-179. ISSN (Electronic): 1459-0263
  • Aras, V. (2020). Hibrit karpuz tohum üretiminde farklı anaçlar üzerine aşılamanın tohum verim ve kalitesine etkileri. Institute of Applied Sciences, Cukurova University, Adana, Türkiye, 209 pp.
  • Atakul, Z. (2024). Anter kültürü uygulamalarinin sitron karpuzunda (Citrullus lanatus var. citroides) haploid bitki eldesi üzerine etkileri. Institute of Applied Sciences, Selcuk University, Konya, Türkiye, 47 pp.
  • Aydin, A., Yetisir, H., Basak, H., Turan, M., Tuna, M. (2022). Rootstock potential of auto and Allotetraploid Citron [Citrullus lanatus var. citroides (L. H. Bailey) Mansf.] for Watermelon [Citrullus lanatus var. lanatus (Thunb.) Matsum. & Nakai] under hydroponic conditions: plant growth and some physiological characteristics. International Journal of Agriculture, Environment and Food Sciences, 6 (4), 648-659.
  • Bekhradi, F., Kashi, A., Delshad, M. (2011). Effect of three cucurbit rootstocks on vegetative and yield of ‘Charleston Grey’ watermelon. International Journal of Plant Production, 5 (2), 105-109. ISSN: 1735-6814 (Print), 1735-8043 (Online).
  • Bianchi, G,. Rizzolo, A., Grassi, M., Provenzi, L., Scalzo, R. L. (2018). External maturity indicators, carotenoid and sugar compositions and volatile patterns in ‘Cuoredolce®’ and ‘Rugby’ mini-watermelon (Citrullus lanatus (Thunb) Matsumura & Nakai) varieties in relation of ripening degree at harvest. Postharvest Biology and Technology, 136, 1-11. ISSN: 0925-5214.
  • Bultosa, G., Molapisi, M., Tselaesele, N., Kobue-Lekalake, R., Desse Haki, G., Makhabu, S., Sekwati-Monang, B., Seifu, E., Nthoiwa, G. P. (2020). Plant-based traditional foods and beverages of Ramotswa village, Botswana. J. Ethnic Foods, 7. https://doi.org/ 10.1186/s42779-019-0041-3
  • Çandır, E., Yetisir, H., Karaca, F., Ustun, D. (2013). Phytochemical characteristics of grafted watermelon on different bottle gourds (Lagenaria siceraria) collected from the Mediterranean region of Turkey. Turkish Journal of Agriculture and Forestry, 37, 443-456. https://doi.org/10.3906/tar-1207-21.
  • Chomicki, G., Schaefer, H., Renner, S. S. (2020). Origin and domestication of Cucurbitaceae crops: Insights from phylogenies, genomics and archaeology. N. Phytol., 226, 1240–1255.
  • Cohen, R., Tyutyunik, J., Fallik, E., Oka, Y., Tadmor, Y., Edelstein, M. (2014). Phytopathological evaluation of exotic watermelon germplasm as a basis for rootstock breeding. Scientia Horticulturae, 165, 203-210. http://dx.doi.org/10.1016/j.scienta.2013.11.007
  • Colla, G., Rouphael, Y., Cardarelli, M., Rea, E. (2006). Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral composition of grafted watermelon plants. HortScience, 4, 622-627. https://doi.org/10.21273/HORTSCI.41.3.622
  • Colla, G., Suãrez, C. M. C., Cardarelli, M., Rouphael, Y. (2010). Improving nitrogen use efficiency in melon by grafting. HortScience, 45, 559-565. https://doi.org/10.21273/HORTSCI.45.4.559.
  • Colla, G., Rouphael, Y., Mirabelli, C., Cardarelli, M. (2011). Nitrogen‐use efficiency traits of mini‐watermelon in response to grafting and nitrogen‐fertilization doses. Journal of Plant Nutrition and Soil Science, 174 (6), 933-941. https://doi.org/10.1002/jpln.201000325
  • Cucu, T., Huvaere, K., Van Den Bergh, M. A., Vinkx, C., Van Loco, J. (2012). A Simple and fast HPLC method to determine lycopene in foods. Food Analytical Methods, 5, 1221-1228. https://doi.org/10.1007/s12161-011-9354-6
  • Cushman, K. E., Huan, J. (2008). Performance of four triploid watermelon cultivars grafted onto five rootstock genotypes: Yield and fruit quality under commercial growing conditions. Acta Horticulturae, 782, 335-337. https://doi.org/10.1007/s12161-011-9354-6
  • Davis, A. R., Perkins-Veazie, P., 2005-2006. Rootstock effects on plant vigor and watermelon fruit quality. Cucurbit Genetics Cooperative Report, 28, 39-42.
  • Davis, A. R., Perkins-Veazie, P., Hassell, R., King, S. R., Zhang, X. (2008). Grafting effects on vegetable quality. HortScience, 43 (6), 1670-1672. https://doi.org/10.21273/HORTSCI.43.6.1670
  • Edelstein, M., Cohen, R., Burger, Y., Shriber, S. (1999). Integrated management of sudden wilt in melons, caused by Monosporascus cannonballus, using grafting and reduced rates of metybromide. Plant Disease, 83 (12), 1442-1445. https://doi.org/10.1094/PDIS.1999.83.12.1142
  • Edelstein, M., Tyutyunik, J., Fallik, E., Meir, A., Tadmor, Y., et al. (2014). Horticultural evaluation of exotic watermelon germplasm as potential rootstocks. Scientia Horticulturae, 165, 196-202. https://doi.org/10.1016/j.scienta.2013.11.010
  • Elmstrom, G. W., Davis, P. L. (1981). Sugars in Developing and Mature Fruits of Several Watermelon Cultivars1, 2. Journal of the American Society for Horticultural Science, 10 6(3), 330-333. ISSN: 0003-1062. https://doi.org/10.21273/JASHS.106.3.330
  • FAO (2023). Food and Agriculture Organization of the United Nations. Retrieved in February, 26, 2025 from https://www.fao.org/faostat/en/#data/QCL
  • Fredes, A., Rosello, S., Beltrán, J., Cebolla-Cornejo, J., Pérez-de-Castro, A., Gisbert, C., Picó, M. B. (2016). Fruit quality assessment of watermelons grafted onto citron melon rootstock. Jornal of the Science of Food and Agriculture, 97, 1646-1655. https://doi.org/10.1002/jsfa.7915
  • Goldschmidt, E. E. (2014). Plant Grafting: New Mechanisms, Evolutionary Implications, Frontiers in Plant Science, 5, pp 727. https://doi.org/10.3389/fpls.2014.00727
  • Guler, Z., Candir, E., Yetisir, H., Karaca, F., Solmaz, I. (2014). Volatile organic compounds in watermelon (Citrullus lanatus) grafted onto 21 local and two commercial bottle gourd (Lagenaria siceraria) rootstocks. The Journal of Horticultural Science and Biotechnology, 89 (4), 448-452. https://doi.org/10.1080/14620316.2014.11513105
  • Han, J. H., Kim, J. Y., Hwang, H. S., Kim, B. S. (2003). Evaluation of F2 and F3 generation of crosses designed for breeding rootstocks with multiple resistance of bacterial wilt and Phytophthora root rot. XIth EUCARPIA Meeting on Genetics and Breeding of Capsicum and Eggplant, Antalya-Türkiye, 284-288.
  • Hassell, R. L., Memmott, F., Liere, D. G. (2008). Grafting methods for watermelon production. HortScience, 43, 1677-1679. https://doi.org/10.21273/HORTSCI.43.6.1677
  • Hu, C. M., Zhu, Y. L., Yang, L. F., Chen, S. F., Huang, Y. M. (2006). Comparison of photosynthetic characteristics of grafted and own-root seedling of cucumber under low temperature circumstances. Acta Botanica Boreali-Occidentalia Sinica, 26, 247-253. Clc Number: Q945.78 S642.2
  • Huang, Y., Zhao, L., Kong, Q., Cheng, F., Niu, M. et al. (2016). Comprehensive mineral nutrition analysis of watermelon grafted onto two different rootstocks. Horticultural Plant Journal, 2 (2), 105-113. https://doi.org/10.1016/j.hpj.2016.06.003
  • Huh, Y. C., Om, Y. H., Lee, J. M. (2002). Utilization of citrullus germplasm with resistance to fusarium wilt (Fusarium oxysporum f. sp. niveum) for watermelon rootstocks. Acta Horticulturae, 588, 127-132. https://doi.org/10.17660/ActaHortic.2002.588.18
  • Huitron-Ramirez, M. V., Ricardez-Salinas, M., Camacho-Ferre, F. (2009). Influence of grafted watermelon plant density on yield and quality in soil infested with melon necrotic spot virus. HortScience, 44, 1838-1841. https://doi.org/10.21273/HORTSCI.44.7.1838
  • Hussein, S., Sari, N. (2020). Effects of different rootstocks on seed yield and quality of triploid watermelon grown in greenhouse. Acta Horticulturae, 1282, 67-74. https://doi.org/10.17660/ActaHortic.2020.1282.12
  • Karaagaç, O., Balkaya, A. (2013). Interspecific hybridization and hybrid seed yield of winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.) lines for rootstock breeding. Scientia Horticulturae, 149, 9-12. https://doi.org/10.1016/j.scienta.2012.10.021
  • Karaca, F., Yetişir, H., Solmaz, I., Candır, E., Kurt, S. et al. (2012). Rootstock potential of Turkish Lagenaria siceraria germplasm for watermelon: Plant growth, yield and quality. Turkish Journal of Agriculture and Forestry, 36 (2), 167-177. https://doi.org/10.3906/tar-1101-1716
  • Keinath, A. P., Hassel, R. L. (2014). Control of Fusarium Wilt of Watermelon by Grafting onto Bottlegourd or Interspecific Hybrid Squash Despite Colonization of Rootstocks by Fusarium. Plant Disease, 98 (2), 255-266. https://doi.org/10.1094/PDIS-01-13-0100-RE
  • King, S. R., Davis, A. R., Zhang, X., Crosby, K. (2010). Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Scientia Horticulturae, 127, 106-111. https://doi.org/10.1016/j.scienta.2010.08.001
  • Kombo, M. D., Sari, N. (2019). Rootstock effects on seed yield and quality in watermelon. Horticulture, Environment, and Biotechnology, 60, 303-312. https://doi.org/10.1007/s13580-019-00131-x
  • Kong, Q., Chen, J., Liu, Y., Ma, Y., Liu, P., Wu, S., Huang, Y., Bie, Z. (2014). Genetic diversity of Cucurbita rootstock germplasm as assessed using simple sequence repeat markers. Scientia Horticulturae, 175, 150-155. https://doi.org/10.1016/j.scienta.2014.06.009
  • Kumar, C. S., Mythily, R., Chandraju, S. (2012). Studies on sugars extracted from watermelon (Citrullus lanatus) rind, a remedy for related waste and its management. International Journal of Chemical and Analytical Science, 3 (8), 1527-1529. ISSN: 0976-1206
  • Kyriacou, M. C., Rouphael, Y., Colla, G., Zrenner, R., Schwarz, D. (2017). Vegetable grafting: The implications of a growing agronomic imperative for vegetable fruit quality and nutritive value. Frontiers in Plant Science, 8, 741. https://doi.org/10.3389/fpls.2017.00741
  • Laghetti, G., Hammer, K. (2007). The corsican citron melon (Citrullus lanatus (Thunb.) Matsum. et Nakai subsp. lanatus var. citroides (Bailey) Mansf. Ex Greb.) a traditional and neglected crop. Genetic Resources and Crop Evolution, 54, 913-916. https://doi.org/10.1007/s10722-007-9220-y
  • Liu, H. Y., Zhu, Z. J., Diao, M., Guo, Z. P. (2006). Characteristic of the sugar metabolism in leaves and fruits of grafted watermelon during fruit development. Plant Physiolgy Communication, 42, 835-840.
  • Lopez-Galarza, S., San Bautista, A., Perez, D. M. (2004). Effects of grafting and cytokinin-induced fruit setting on color and sugar-content traits in glasshouse-grown triploid watermelon. Jornal of the Horticultural Science and Biotechnolgy, 79, 971-976. https://doi.org/10.1080/14620316.2004.11511875
  • Lv, P., Li, N., Liu, H., Gu, H., Zhao, W. (2015). Changes in carotenoid profiles and in the expression pattern of the genes in carotenoid metabolisms during fruit development and ripening in four watermelon cultivars. Food Chemistry, 174, 52-59. https://doi.org/10.1016/j.foodchem.2014.11.022
  • Mandizvo, T., Odindo, A.O., Mashilo, J. (2021). Citron watermelon potential to improve crop diversification and reduce negative impacts of climate change. Sustainability, 13. https://doi.org/10.3390/su13042269.
  • Mandizvo, T., Odindo, A. O., Mashilo, J., Magwaza, L. S. (2022). Drought tolerance assessment of citron watermelon (Citrullus lanatus var. citroides (L.H. Bailey) Mansf. Ex Greb.) Accessions based on morphological and physiological traits. Plant Physiol. Biochem., 80, 106–123. https://doi.org/10.1016/j.plaphy.2022.03.037
  • Maurya, D., Pandey, A. K., Kumar, V., Dubey, S., Prakash, V. (2019). Grafting techniques in vegetable crops: A review. International Journal of Chemical Studies, 7 (2), 1664-1672. E-ISSN: 2321–4902
  • Metin, D., Atakul, Z., Kurtar, E. S., Seymen, M., Alan, A. R., Çelebi Toprak, F. (2024). Callogenesis, embryogenesis, and plantlet initiation in citron watermelon (Citrullus lanatus var. citroides) via anther and unfertilized ovary culture. Scientia Horticulturae, 337 (1), 113493. https://doi.org/10.1016/j.scienta.2024.113493.
  • Miguel, A., Maroto, J. V., San Bautista, A., Baixauli, C., Cebolla, V., Pascual, B., López, S., Guardiola, J. L. (2004). The grafting of triploid watermelon is an advantageous alternative to soil fumigation by methyl bromide for control of Fusarium wilt. Scientia Horticulturae, 103, 9-17. https://doi.org/10.1016/j.scienta.2004.04.007
  • Mohamed, F. H., Abd El-Hamed, K. E., Elwan, M. W. M., Hussein, M. N. E. (2014). Evaluation of different grafting methods and rootstocks in watermelon grown in Egypt. Scientia Horticulturae, 168, 145-150. https://doi.org/10.1016/j.scienta.2014.01.029
  • Nkoana, D. K., Mashilo, J., Shimelis, H. ve Ngwepe, R. M. (2022). Nutritional, phytochemical compositions and natural therapeutic values of citron watermelon (Citrullus lanatus var. citroides): A Review. South African Journal of Botany, 145, 65-77.
  • Ozmen, S., Kanber, R., Sari, N., Unlu, M. (2015). The effects of deficit irrigation on nitrogen consumption, yield, and quality in drip irrigated grafted and ungrafted watermelon. Journal of Integrative Agriculture, 14 (5), 966-976. https://doi.org/10.1016/S2095-3119(14)60870-4
  • Passam, H. (2003). Use of grafting makes comeback. Fruits and Vegetable Technologies, 3 (4), 7-9.
  • Perkins-Veazie, P., Collins, J. K., Davis, A. R., Roberts, W. (2006). Carotenoid content of 50 watermelon cultivars. Journal of Agricultural and Food Chemistry, 54 (7), 2593-2597. https://doi.org/10.1021/jf052066p
  • Perkins-Veazie, P., Zhang, X., Collins, J. K., Wu, G., Lu, G. et al. (2008). Watermelon fruit content of amino acids and carotenoids increases with grafting. Journal of The Science of Food and Agriculture, (Submitted manuscript).
  • Petropoulos, S. A., Olympios, C., Ropokis, A., Vlachou, G., Ntatsi, G. et al. (2014). Fruit volatiles, quality and yield of watermelon as affected by grafting. Journal of Agricultural Science and Technolgy, 16, 873-885. http://jast.modares.ac.ir/article-23-7623-en.html
  • Proietti, S., Rouphael, Y., Colla, G., Cardarelli, M., Agazio, M. D. et al. (2008). Fruit quality of mini watermelon as affected by grafting and irrigation regimes. Journal of The Science of Food and Agriculture, 88, 1107-1114. https://doi.org/10.1002/jsfa.3207
  • Rivero, R. M., Rui, J. M., Romero, L. (2003). Role of grafting in horticultural plants under stress conditions. Food, Agriulture and Environment, 1, 70-74.
  • Rouphael, Y., Cardarelli, M., Rea, E., Colla, G. (2008). Grafting of cucumber as a means to minimize copper toxicity. Environmental and Experimental Botany, 63, 49-58. https://doi.org/10.1016/j.envexpbot.2007.10.015
  • Rouphael, Y., Schwarz, D., Krumbein, A., Colla, G. (2010). Impact of grafting on product quality of fruit vegetables. Science Horticulture, 127, 172-179. https://doi.org/10.1016/j.scienta.2010.09.001
  • Sakata, Y., Ohara, T., Sugiyama, M. (2007). The history and present state of the grafting of cucurbitaceous vegetables in Japan. Acta Horticultarae, 731, 159-170. https://doi.org/10.17660/ActaHortic.2007.731.22
  • Sari, N., Yetisir, H., Yucel, S., Dundar, O. (1998). Effects of grafted seedling on yield and fruit quality in watermelon production. TUBITAK TOGTAG/TARP, project number: 2410.
  • Soteriou, G. A., Kyriacou, M. C., Siomos, A. S., Gerasopoulos, D. (2014). Evolution of watermelon fruit physicochemical and phytochemical composition during ripening as affected by grafting. Food Chemistry, 165, 282-289. https://doi.org/10.1016/j.foodchem.2014.04.120
  • Tadmor, Y., King, S., Levi, A., Davis, A., Meir, A. et al. (2005). Comparative fruit colouration in watermelon and tomato. Food Research International, 38 (8-9), 837-841. https://doi.org/10.1016/j.foodres.2004.07.011
  • Thies, J. A., Ariss, J. J., Hassell, R. L., Olson, S., Kousik, C. S. et al. (2010). Grafting for management of southern root-knot nematode, Meloidogyne incognita, in watermelon. Plant Disease, 94, 1195-1199. https://doi.org/10.1094/PDIS-09-09-0640
  • Thies, J.A., Arris, J. J., Hassel, R. L., Levi, A. (2012). Resistant rootstocks for managing root-knot nematods (Meloidogyne incognita) in grafted watermelon and melon. In: Xth EUCARPIA meeting on genetics and breeding of Cucurbitaceae, Antalya, Türkiye. 202-211.
  • Thies, J. A., Ariss, J. J., Hassell, R. L., Buckner, S., Levi, A. (2015). Accessions of Citrullus lanatus var. citroides are valuable rootstocks for grafted watermelon in fields infested with root-knot nematodes. HortScience, 50, 4-8. https://doi.org/10.21273/HORTSCI.50.1.4
  • Toporek, S. M., Keinath, A. P. (2020). Evaluating Cucurbit Rootstocks to Prevent Disease Caused by Pythium aphanidermatum and P. myriotylum on Watermelon. Plant Disease, 104, 3019-3025. https://doi.org/10.1094/PDIS-03-20-0474-RE
  • Turhan, A., Ozmen, N., Kuscu, H., Serbeci, M. S., Seniz, V. (2012). Influence of rootstocks on yield and fruit characteristics and quality of watermelon. Horticulture, Environment and Biotechnology, 53, 336-341. https://doi.org/10.1007/s13580-012-0034-2
  • Yativ, M., Harary, I., Wolf, S. (2010). Sucrose accumulation in watermelon fruits: Genetic variation and biochemical analysis. Journal of Plant Physiolgy, 167, 589-596. https://doi.org/10.1016/j.jplph.2009.11.009
  • Yavuz, D., Seymen, M., Süheri, S., Yavuz, N., Türkmen, Ö., Kurtar, E. S. (2020). How do rootstocks of citron watermelon (Citrullus lanatus var. citroides) affect the yield and quality of watermelon under deficit irrigation? Agricultural Water Management, 241, 106351.
  • Yetisir, H., Sari, N. (2003). Effect of different rootstocks on plant growth, yield and quality of watermelon. Australian Journal of Experimental Agriculture, 43, 1269-1274. https://doi.org/10.1071/EA02095
  • Yetisir, H., Sari, N., Yucel, S. (2003). Rootstock resistance to Fusarium wilt and effect on watermelon fruit yield and quality. Phytoparsitica, 31, 163-169. https://doi.org/10.1007/BF02980786
  • Yetisir, H., Sari, N., Aktas, H., Karaman, C., Abak, K. (2006). Effect of different substrates on plant growth, yield and quality of watermelon grown in soilless culture. American Eurasian Journal of Agriulture and Environmental Science, 1, 113-118.
  • Yetisir, H., Kurt, S., Sari, N., Tok, M. F. (2007). Rootstock potential of Turkish Lagenaria siceraria germplasm for watermelon: Plant growth, graft compatibility and resistance to Fusarium. Turkish Journal of Agriculture and Forestry, 31, 381-388. eISSN: 1303-6173
  • Yetisir, H., Erturk, E., Guler, Z., Kurt, S., Solmaz, I. (2010). Determination of rootstock potential of bottle gourd (Lagenaria siceraria) collected from Mediterranean region for watermelon regarding yield and quality. Final report of Project TOVAG 106O650, The Scientific and Technical Research Council of Turkey, Ankara, 98.
  • Wehner, T. C. (2008). Watermelon In: Handbook of 135 Plant Breeding; Vegetables I: Asteraceae, Brassicaceae, Chenopodiaceae, and Cucurbitaceae. Springer Science+ Business LLC, New York, NY, 381-418. ISBN: 978-0-387-30443-4
There are 79 citations in total.

Details

Primary Language English
Subjects Vegetable Growing and Treatment
Journal Section Research Articles
Authors

Güzin Tarım 0000-0002-7351-4999

İlknur Solmaz 0000-0003-2996-0286

Nebahat Sari 0000-0001-7112-4279

Hasim Kelebek 0000-0002-8419-3019

Project Number 113O199
Publication Date June 26, 2025
Submission Date January 22, 2025
Acceptance Date May 24, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Tarım, G., Solmaz, İ., Sari, N., Kelebek, H. (2025). The rootstock potential of Citron (Citrullus amarus) for watermelon. International Journal of Agriculture Environment and Food Sciences, 9(2), 452-463. https://doi.org/10.31015/2025.2.19

Abstracting & Indexing Services


© International Journal of Agriculture, Environment and Food Sciences

All content published by the journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
This license allows others to share and adapt the material for non-commercial purposes, provided proper attribution is given to the original work.
Authors retain the copyright of their articles and grant the journal the right of first publication under an open-access model

Web:  dergipark.org.tr/jaefs  E-mail:  editorialoffice@jaefs.com Phone: +90 850 309 59 27