Araştırma Makalesi
BibTex RIS Kaynak Göster

Sekizinci Sınıf Matematik Ders Kitapları ile LGS Sınavlarındaki Cebir Konusuyla İlgili Çoklu Temsil Türlerinin İncelenmesi

Yıl 2025, Cilt: 16 Sayı: 3, 4669 - 4696, 27.12.2025
https://doi.org/10.51460/baebd.1672893

Öz

Bu araştırma, 2022-2023 eğitim öğretim yılına ait Milli Eğitim Bakanlığı tarafından hazırlanan ortaokul sekizinci sınıf matematik ders kitaplarındaki sorular ile 2018-2023 yılları arasında yapılan LGS sınavlarındaki matematik sorularında cebir konusu kapsamında yer alan çoklu temsil türlerinin kullanımını incelemektedir. Çalışma, doküman incelemesi yöntemiyle gerçekleştirilmiştir. Veri toplama araçları olarak MEB Yayınları ve Koza Yayınları tarafından hazırlanan ders kitapları ile 2018-2023 yıllarına ait LGS matematik soruları kullanılmıştır. Elde edilen bulgulara göre, hem ders kitaplarındaki sorular hem de LGS sınav soruları, verilen ve istenen duruma göre çoklu temsil türlerinin kullanımında bazı benzerlikler ve farklılıklar göstermektedir. Ders kitaplarında, verilen bilgilerle en çok sözel ifade temsili, çözümde ise cebirsel ifade temsili tercih edilmiştir. Ancak, kitaplarda çoklu temsiller arasında geçiş örnekleri bulunmasına rağmen, LGS sınavlarında bu geçişlere dair örnekler sınırlıdır. LGS matematik sorularında, çözümde cebirsel ifade ve grafik temsili istenirken, sözel ifade ve tablo temsili talep edilmemiştir. Bu nedenle, LGS sınavları matematik soruları açısından, ortaokul ders kitaplarına kıyasla çoklu temsil türlerinin kullanımı bakımından eksik kalmaktadır. Gelecek çalışmaların, ders kitapları ve LGS sınavlarındaki eğim, üçgenler gibi farklı konuları da incelemesi önerilmektedir.

Kaynakça

  • Akkan, Y., Akkan, P., ve Güven, B. (2017). Aritmetik ve cebir kavramları ile ilgili farkındalık. Bayburt Eğitim Fakültesi Dergisi, 12(24), 527-558.
  • Altunkaynak, Karakaş, Albayrak, Polat, Tunç ve Kavurmacı (2023). Ortaokul ve imam hatip ortaokulu matematik ders kitabı 8. Ankara: Milli Eğitim Bakanlığı (MEB) Yayınları.
  • Ayyıldız, H. ve Aktaş, M. C. (2022). 8. Sınıf matematik ders kitaplarının ve LGS matematik sorularının PİSA temsil yeterliği açısından incelenmesi. Trakya Eğitim Dergisi, 12(1), 475-489.
  • Bayrakçı, M. (2005). Ders kitapları konusu ve ilköğretimde ücretsiz ders kitabı dağıtımı projesi. Milli Eğitim Dergisi, 165, 1-10.
  • Cleaves, W. P. (2008). Promoting mathematics accessibility through multiple representations jigsaws. Mathematics Teaching in the Middle School, 13(8), 446-452.
  • Confrey, J. ve Smith, E. (1991). A Framework for Functions: Prototypes, Multiple Representations and Transformations. In R. G. Underhill (Ed.), Proceedings of the 13th Annual Meeting of the North American Chapter of The International Group for the Psychology of Mathematics Education (pp. 57-63). Blacksburg: Virginia Polytechnic Institute and State University
  • Çelik, D. ve Sağlam Arslan, A. (2012). The analysis of teacher candidates’ translating skills in multiple representations. Elementary Education Online, 11(1), 239-250.
  • Dede, Y. ve Argün, Z. (2003). Cebir, Öğrencilere Niçin Zor Gelmektedir? Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 24, 180-185.
  • Floden, R. E. (2002). The measurement of opportunity to learn. In A. C. Porter ve A. Gamoran (Eds.), Methodological advances in cross-national surveys of educational achievements (pp. 231-266). Washington: National Academy Press.
  • Friedlander, A. ve Tabach, M. (2001). Developing a curriculum of beginning algebra in a spread-sheet environment. In H. Chick, K. Stacey, J. Vincent ve J. Vincent (Eds.). The future of teaching and learning of algebra, Proceedings of the 12th ICMI Study Conference (Vol.1, pp.252-257). Melbourne, Australia: The University of Melbourne.
  • Gezmiş ve Akkaya (2022) Ortaokul ve imam hatip ortaokulu matematik ders kitabı 8. Ankara: Ada Yayınları.
  • Gürbüz, M. Ç. (2021). Ortaokul öğrencilerinin cebirsel kavramları soyutlama süreçlerinin incelenmesi (Doktora Tezi). Bursa Uludağ Üniversitesi, Eğitim Bilimleri Enstitüsü.
  • Güven, S. (2010). İlköğretim hayat bilgisi dersi ders ve öğrenci çalışma kitaplarının öğretmen görüşlerine göre değerlendirilmesi. Eğitim ve Bilim Dergisi, 35(156), 84-95.
  • Herman, J. L., Klein, D. C. D. ve Abedi, J. (2000). Assessing student’s opportunity to learn: Teacher and student perspectives. Educational Measurement: Issues and Practice, 19 (4), 16-24.
  • İncikabi, S. (2017). Çoklu temsiller ve matematik ögretimi: ders kitaplari üzerine bir inceleme. Cumhuriyet International Journal of Education, 6(1), 66.
  • Janvier, C. (1987). Conceptions and representations: The circle as an example. In C. Janvier (Ed.), Problems of Representations in the Learning and Teaching of Mathematics (pp. 147- 159). New Jersey: Lawrence Erlbaum Associates.
  • Johansson, M. (2003). Textbooks in mathematics education: a study of textbooks as the potentially implemented curriculum (Licentiate thesis). Luleå: Department of Mathematics, Luleå University of Technology.
  • Kandemir, M. A. ve Yıldız, Y. (2019). Ortaokul matematik ders kitaplarının incelenmesinde kullanılan kavramsal çerçeveler. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 13(2), 1273-1304.
  • Kaput, J. J. (1987). Representation systems and mathematics. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 19-26). New Jersey: Lawrence Erlbaum Associates.
  • Karasar, N. (2005). Bilimsel araştırma yöntemi. 15. Baskı. Nobel Yayın Dağıtım, Ankara.
  • Kaya, D. (2015). Çoklu temsil temelli öğretimin öğrencilerin cebirsel muhakeme becerilerine, cebirsel düşünme düzeylerine ve matematiğe yönelik tutumlarına etkisi üzerine bir inceleme (Yayınlanmamış doktora tezi). Dokuz Eylül Üniversitesi, Eğitim Bilimler Enstitüsü.
  • Kaya, D. (2017). Yedinci sınıf öğrencilerinin cebirsel düşünme düzeyleri ile becerilerinin incelenmesi. Bartın Eğitim Fakültesi Dergisi, 6(2), 657-675. https://doi.org/10.14686/buefad.309000
  • Keller, B. A. ve Hirsch, C. R. (1998). Student preferences for representations of functions. International Journal in Mathematics Education Science Technology, 29(1), 1-17.
  • Kılıç, Ç. (2009). İlköğretim beşinci Sınıf Öğrencilerinin Matematiksel Problemlerin Çözümlerinde Kullandıkları Temsiller (Doktora Tezi). Eskişehir Anadolu Üniversitesi, Eğitim Bilimleri Enstitüsü
  • Kılıçoğlu, E. (2020). Ortaokul matematik ders kitabı etkinliklerinde soyutlama becerisinin incelenmesi. Mersin Üniversitesi Eğitim Fakültesi Dergisi, 16(3), 628-650.
  • Kırnap Dönmez, S. M. ve Dede, Y. (2020). Ortaöğretime geçiş sınavları matematik sorularının (2016, 2017 ve 2018 yılları) matematiksel yeterlikler açısından incelenmesi. Başkent University Journal of Education, 7(2), 363-374.
  • Korkmaz, E., Tutak, T. ve İlhan, A., (2020). Ortaokul Matematik Ders Kitaplarının Matematik Öğretmenleri Tarafından Değerlendirilmesi. Avrupa Bilim ve Teknoloji Dergisi, (18), 118-128.
  • Lesh, R., Post, T. ve Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving. In C. Janvier (Ed.), Problems of Representation in the Teaching and Learning of Mathematics (pp. 33-40). New Jersey: Lawrence Erlbaum Associates.
  • Mayer, R.E., Sims, V. ve Tajika, H. (1995). A comparison of how textbooks teach mathematical problem solving in Japan and the United States. American Educational Research Journal, 32, 443-460.
  • Milli Eğitim Bakanlığı (MEB). (2018). 30332 Sayılı Resmi Gazete (14 Şubat, sayfa. 9-14). https://www.resmigazete.gov.tr/eskiler/2018/02/20180214.pdf sitesinden 26.06.2025 tarihinde erişilmiştir.
  • Milli Eğitim Bakanlığı (MEB) (2018a). Sınavla öğrenci alacak ortaöğretim kurumlarına ilişkin merkezi sınav başvuru ve uygulama kılavuzu. Ankara: Milli Eğitim Bakanlığı https://www.meb.gov.tr/sinavlar/dokumanlar/2018/MERKEZ%C4%B0%20SINAV%20_BASVURU_VE_UYGULAMA_K%20ILAVUZU.pdf sitesinden 26.06.2025 tarihinde erişilmiştir.
  • Milli Eğitim Bakanlığı (MEB). (2018b). Liselere Geçiş Sınavı Sayısal Bölüm Soru Kitapçıkları (Sınavla Öğrenci Alacak Ortaöğretim Kurumlarına İlişkin Merkezi Sınav). https://odsgm.meb.gov.tr/meb_iys_dosyalar/2018_06/03153730_SAYISAL_BYLYM_A_kitapYY.pdf sitesinden 16.10.2025 tarihinde indirilmiştir.
  • Milli Eğitim Bakanlığı (MEB). (2019). Liselere Geçiş Sınavı Sayısal Bölüm Soru Kitapçıkları (Sınavla Öğrenci Alacak Ortaöğretim Kurumlarına İlişkin Merkezi Sınav. https://www.meb.gov.tr/meb_iys_dosyalar/2019_06/02130019_2019_SAYISAL_BOLUM.pdf sitesinden 16.10.2025 tarihinde indirilmiştir.
  • Milli Eğitim Bakanlığı (MEB). (2020). Liselere Geçiş Sınavı Sayısal Bölüm Soru Kitapçıkları (Sınavla Öğrenci Alacak Ortaöğretim Kurumlarına İlişkin Merkezi Sınav). https://cdn.eba.gov.tr/icerik/2020/06/2020_sayisal_bolum_a.pdf sitesinden 16.10.2025 tarihinde indirilmiştir.
  • Milli Eğitim Bakanlığı (MEB). (2021). Liselere Geçiş Sınavı Sayısal Bölüm Soru Kitapçıkları (Sınavla Öğrenci Alacak Ortaöğretim Kurumlarına İlişkin Merkezi Sınav). https://cdn.eba.gov.tr/icerik/lgs/2021_SAYISAL_BOLUM_A_.pdf sitesinden 16.10.2025 tarihinde indirilmiştir.
  • Milli Eğitim Bakanlığı (MEB). (2022). Liselere Geçiş Sınavı Sayısal Bölüm Soru Kitapçıkları (Sınavla Öğrenci Alacak Ortaöğretim Kurumlarına İlişkin Merkezi Sınav). https://cdn.eba.gov.tr/icerik/lgs/2022_sayisal_bolum_a_kitapcigi_ve_cevap_anahtari.pdf sitesinden 16.10.2025 tarihinde indirilmiştir.
  • Milli Eğitim Bakanlığı (MEB). (2023). Liselere Geçiş Sınavı Sayısal Bölüm Soru Kitapçıkları (Sınavla Öğrenci Alacak Ortaöğretim Kurumlarına İlişkin Merkezi Sınav). https://cdn.eba.gov.tr/yardimcikaynaklar/2025/06/2025_sayisal.pdf sitesinden 16.10.2025 tarihinde indirilmiştir.
  • Milli Eğitim Bakanlığı (MEB). (2024). Liselere Geçiş Sınavı Sayısal Bölüm Soru Kitapçıkları (Sınavla Öğrenci Alacak Ortaöğretim Kurumlarına İlişkin Merkezi Sınav). https://cdn.eba.gov.tr/yardimcikaynaklar/2024/06/2024sayisal.pdf sitesinden 26.06.2025 tarihinde indirilmiştir.
  • Millî Eğitim Bakanlığı (MEB). (2024). Ortaokul matematik dersi öğretim programı Türkiye yüzyılı maarif modeli. Ankara.
  • Milli Eğitim Bakanlığı (MEB). (2025). Liselere Geçiş Sınavı Sayısal Bölüm Soru Kitapçıkları (Sınavla Öğrenci Alacak Ortaöğretim Kurumlarına İlişkin Merkezi Sınav). https://cdn.eba.gov.tr/yardimcikaynaklar/2025/06/lgss/2025sayisal.pdf sitesinden 26.06.2025 tarihinde indirilmiştir.
  • Özarslan, P. (2010). İlköğretim 7. Sınıf öğrencilerinin cebirsel sözel problemleri denklem kurma yoluyla çözme becerilerinin incelenmesi (Yüksek Lisans Tezi). Çukurova Üniversitesi, Adana
  • Pickle, M. C. C. (2012), Statistical content in middle grades mathematics textbooks. (Unpublished doctoral dissertation). University of South Florida, USA.
  • Rock, S. (1992). An examination of selected features of six mathematics textbooks at the seventh-grade level (Unpublished doctoral dissertation). The University of Wisconsin, Madison, USA.
  • Şensoy, S., Tanberkan, H., Suna, H. E., Eroğlu, E. ve Altun, Ü. (2018). 2018 Liselere Geçiş Sistemi (LGS) (Eğitim Analiz Değerlendirme Raporları Serisi/ Yayın No. 3). Ankara: Milli Eğitim Bakanlığı. Erişim adresi https://www.meb.gov.tr/meb_iys_dosyalar/2018_12/17094056_2018_lgs_rapor.pdf sitesinden 22.10.2025 tarihinde indirilmiştir.
  • Tavşan, S. (2020). 6. Sınıf Öğrencilerinin Verilen Cebirsel İfadeleri Uygun Sözel İfadelere Dönüştürebilme Becerilerinin İncelenmesi. Ondokuz Mayis University Journal of Education Faculty, 39(3 100. Yıl Eğitim Sempozyumu Özel Sayı), 275-288.
  • Törnroos, J. (2005). Mathematics textbooks, opportunity to learn and student achievement. Studies in Educational Evaluation. 31(4), 315-327.
  • Ünal, C. ve Eroğlu, D. (2021). LGS Matematik Sorularının Öğretim Programının Özel Amaçlarıyla Uyumluluğunun İncelenmesi. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, 1(60), 510-536.
  • Vance, J. H. (1998). Number operations from an algebraic perpective. Teaching Children Mathematics, 4(5), 282-285.
  • Yağız, G. ve Tapan-Broutin, M. S. (2025). Yedinci sınıf öğrencilerinin cebir konusundaki çoklu temsiller arası geçiş süreçlerinin incelenmesi. Kocaeli Üniversitesi Eğitim Dergisi, 6(1), 141-155.
  • Yalçın, D. ve Duran, E. (2022). LGS Türkçe ve Matematik Sorularındaki Grafiklerin İncelenmesi. Uşak Üniversitesi Eğitim Araştırmaları Dergisi, 8(3), 53-72.
  • Yenilmez, K. ve Teke, M. (2008). Yenilenen matematik programının öğrencilerin cebirsel düşünme düzeylerine etkisi. İnönü Üniversitesi Eğitim Fakültesi Dergisi, 9(15), 229-246.

Investigation of Multiple Representation Types Related to Algebra in Eighth Grade Mathematics Textbooks and LGS Exams

Yıl 2025, Cilt: 16 Sayı: 3, 4669 - 4696, 27.12.2025
https://doi.org/10.51460/baebd.1672893

Öz

This study examines the use of multiple representation types within the scope of algebra in the questions in the secondary school eighth grade mathematics textbooks prepared by the Ministry of National Education for the 2022-2023 academic year and in the mathematics questions in the LGS exams held between 2018-2023. The study was conducted by document analysis method. Textbooks prepared by MEB Publications and Koza Publications and LGS mathematics questions from 2018-2023 were used as data collection tools. According to the findings, both the questions in the textbooks and the LGS exam questions show some similarities and differences in the use of multiple representation types according to the given and desired situation. In the textbooks, verbal expression representation was mostly preferred with the given information, while algebraic expression representation was preferred in the solution. However, although there are examples of transitions between multiple representations in textbooks, examples of these transitions in LGS exams are limited. In LGS mathematics questions, algebraic expression and graphical representation were required in the solution, while verbal expression and table representation were not required. Therefore, LGS exams are deficient in terms of the use of multiple representation types in mathematics questions compared to secondary school textbooks. It is suggested that future studies should examine different topics such as slope and triangles in textbooks and LGS exams.

Kaynakça

  • Akkan, Y., Akkan, P., ve Güven, B. (2017). Aritmetik ve cebir kavramları ile ilgili farkındalık. Bayburt Eğitim Fakültesi Dergisi, 12(24), 527-558.
  • Altunkaynak, Karakaş, Albayrak, Polat, Tunç ve Kavurmacı (2023). Ortaokul ve imam hatip ortaokulu matematik ders kitabı 8. Ankara: Milli Eğitim Bakanlığı (MEB) Yayınları.
  • Ayyıldız, H. ve Aktaş, M. C. (2022). 8. Sınıf matematik ders kitaplarının ve LGS matematik sorularının PİSA temsil yeterliği açısından incelenmesi. Trakya Eğitim Dergisi, 12(1), 475-489.
  • Bayrakçı, M. (2005). Ders kitapları konusu ve ilköğretimde ücretsiz ders kitabı dağıtımı projesi. Milli Eğitim Dergisi, 165, 1-10.
  • Cleaves, W. P. (2008). Promoting mathematics accessibility through multiple representations jigsaws. Mathematics Teaching in the Middle School, 13(8), 446-452.
  • Confrey, J. ve Smith, E. (1991). A Framework for Functions: Prototypes, Multiple Representations and Transformations. In R. G. Underhill (Ed.), Proceedings of the 13th Annual Meeting of the North American Chapter of The International Group for the Psychology of Mathematics Education (pp. 57-63). Blacksburg: Virginia Polytechnic Institute and State University
  • Çelik, D. ve Sağlam Arslan, A. (2012). The analysis of teacher candidates’ translating skills in multiple representations. Elementary Education Online, 11(1), 239-250.
  • Dede, Y. ve Argün, Z. (2003). Cebir, Öğrencilere Niçin Zor Gelmektedir? Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 24, 180-185.
  • Floden, R. E. (2002). The measurement of opportunity to learn. In A. C. Porter ve A. Gamoran (Eds.), Methodological advances in cross-national surveys of educational achievements (pp. 231-266). Washington: National Academy Press.
  • Friedlander, A. ve Tabach, M. (2001). Developing a curriculum of beginning algebra in a spread-sheet environment. In H. Chick, K. Stacey, J. Vincent ve J. Vincent (Eds.). The future of teaching and learning of algebra, Proceedings of the 12th ICMI Study Conference (Vol.1, pp.252-257). Melbourne, Australia: The University of Melbourne.
  • Gezmiş ve Akkaya (2022) Ortaokul ve imam hatip ortaokulu matematik ders kitabı 8. Ankara: Ada Yayınları.
  • Gürbüz, M. Ç. (2021). Ortaokul öğrencilerinin cebirsel kavramları soyutlama süreçlerinin incelenmesi (Doktora Tezi). Bursa Uludağ Üniversitesi, Eğitim Bilimleri Enstitüsü.
  • Güven, S. (2010). İlköğretim hayat bilgisi dersi ders ve öğrenci çalışma kitaplarının öğretmen görüşlerine göre değerlendirilmesi. Eğitim ve Bilim Dergisi, 35(156), 84-95.
  • Herman, J. L., Klein, D. C. D. ve Abedi, J. (2000). Assessing student’s opportunity to learn: Teacher and student perspectives. Educational Measurement: Issues and Practice, 19 (4), 16-24.
  • İncikabi, S. (2017). Çoklu temsiller ve matematik ögretimi: ders kitaplari üzerine bir inceleme. Cumhuriyet International Journal of Education, 6(1), 66.
  • Janvier, C. (1987). Conceptions and representations: The circle as an example. In C. Janvier (Ed.), Problems of Representations in the Learning and Teaching of Mathematics (pp. 147- 159). New Jersey: Lawrence Erlbaum Associates.
  • Johansson, M. (2003). Textbooks in mathematics education: a study of textbooks as the potentially implemented curriculum (Licentiate thesis). Luleå: Department of Mathematics, Luleå University of Technology.
  • Kandemir, M. A. ve Yıldız, Y. (2019). Ortaokul matematik ders kitaplarının incelenmesinde kullanılan kavramsal çerçeveler. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 13(2), 1273-1304.
  • Kaput, J. J. (1987). Representation systems and mathematics. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 19-26). New Jersey: Lawrence Erlbaum Associates.
  • Karasar, N. (2005). Bilimsel araştırma yöntemi. 15. Baskı. Nobel Yayın Dağıtım, Ankara.
  • Kaya, D. (2015). Çoklu temsil temelli öğretimin öğrencilerin cebirsel muhakeme becerilerine, cebirsel düşünme düzeylerine ve matematiğe yönelik tutumlarına etkisi üzerine bir inceleme (Yayınlanmamış doktora tezi). Dokuz Eylül Üniversitesi, Eğitim Bilimler Enstitüsü.
  • Kaya, D. (2017). Yedinci sınıf öğrencilerinin cebirsel düşünme düzeyleri ile becerilerinin incelenmesi. Bartın Eğitim Fakültesi Dergisi, 6(2), 657-675. https://doi.org/10.14686/buefad.309000
  • Keller, B. A. ve Hirsch, C. R. (1998). Student preferences for representations of functions. International Journal in Mathematics Education Science Technology, 29(1), 1-17.
  • Kılıç, Ç. (2009). İlköğretim beşinci Sınıf Öğrencilerinin Matematiksel Problemlerin Çözümlerinde Kullandıkları Temsiller (Doktora Tezi). Eskişehir Anadolu Üniversitesi, Eğitim Bilimleri Enstitüsü
  • Kılıçoğlu, E. (2020). Ortaokul matematik ders kitabı etkinliklerinde soyutlama becerisinin incelenmesi. Mersin Üniversitesi Eğitim Fakültesi Dergisi, 16(3), 628-650.
  • Kırnap Dönmez, S. M. ve Dede, Y. (2020). Ortaöğretime geçiş sınavları matematik sorularının (2016, 2017 ve 2018 yılları) matematiksel yeterlikler açısından incelenmesi. Başkent University Journal of Education, 7(2), 363-374.
  • Korkmaz, E., Tutak, T. ve İlhan, A., (2020). Ortaokul Matematik Ders Kitaplarının Matematik Öğretmenleri Tarafından Değerlendirilmesi. Avrupa Bilim ve Teknoloji Dergisi, (18), 118-128.
  • Lesh, R., Post, T. ve Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving. In C. Janvier (Ed.), Problems of Representation in the Teaching and Learning of Mathematics (pp. 33-40). New Jersey: Lawrence Erlbaum Associates.
  • Mayer, R.E., Sims, V. ve Tajika, H. (1995). A comparison of how textbooks teach mathematical problem solving in Japan and the United States. American Educational Research Journal, 32, 443-460.
  • Milli Eğitim Bakanlığı (MEB). (2018). 30332 Sayılı Resmi Gazete (14 Şubat, sayfa. 9-14). https://www.resmigazete.gov.tr/eskiler/2018/02/20180214.pdf sitesinden 26.06.2025 tarihinde erişilmiştir.
  • Milli Eğitim Bakanlığı (MEB) (2018a). Sınavla öğrenci alacak ortaöğretim kurumlarına ilişkin merkezi sınav başvuru ve uygulama kılavuzu. Ankara: Milli Eğitim Bakanlığı https://www.meb.gov.tr/sinavlar/dokumanlar/2018/MERKEZ%C4%B0%20SINAV%20_BASVURU_VE_UYGULAMA_K%20ILAVUZU.pdf sitesinden 26.06.2025 tarihinde erişilmiştir.
  • Milli Eğitim Bakanlığı (MEB). (2018b). Liselere Geçiş Sınavı Sayısal Bölüm Soru Kitapçıkları (Sınavla Öğrenci Alacak Ortaöğretim Kurumlarına İlişkin Merkezi Sınav). https://odsgm.meb.gov.tr/meb_iys_dosyalar/2018_06/03153730_SAYISAL_BYLYM_A_kitapYY.pdf sitesinden 16.10.2025 tarihinde indirilmiştir.
  • Milli Eğitim Bakanlığı (MEB). (2019). Liselere Geçiş Sınavı Sayısal Bölüm Soru Kitapçıkları (Sınavla Öğrenci Alacak Ortaöğretim Kurumlarına İlişkin Merkezi Sınav. https://www.meb.gov.tr/meb_iys_dosyalar/2019_06/02130019_2019_SAYISAL_BOLUM.pdf sitesinden 16.10.2025 tarihinde indirilmiştir.
  • Milli Eğitim Bakanlığı (MEB). (2020). Liselere Geçiş Sınavı Sayısal Bölüm Soru Kitapçıkları (Sınavla Öğrenci Alacak Ortaöğretim Kurumlarına İlişkin Merkezi Sınav). https://cdn.eba.gov.tr/icerik/2020/06/2020_sayisal_bolum_a.pdf sitesinden 16.10.2025 tarihinde indirilmiştir.
  • Milli Eğitim Bakanlığı (MEB). (2021). Liselere Geçiş Sınavı Sayısal Bölüm Soru Kitapçıkları (Sınavla Öğrenci Alacak Ortaöğretim Kurumlarına İlişkin Merkezi Sınav). https://cdn.eba.gov.tr/icerik/lgs/2021_SAYISAL_BOLUM_A_.pdf sitesinden 16.10.2025 tarihinde indirilmiştir.
  • Milli Eğitim Bakanlığı (MEB). (2022). Liselere Geçiş Sınavı Sayısal Bölüm Soru Kitapçıkları (Sınavla Öğrenci Alacak Ortaöğretim Kurumlarına İlişkin Merkezi Sınav). https://cdn.eba.gov.tr/icerik/lgs/2022_sayisal_bolum_a_kitapcigi_ve_cevap_anahtari.pdf sitesinden 16.10.2025 tarihinde indirilmiştir.
  • Milli Eğitim Bakanlığı (MEB). (2023). Liselere Geçiş Sınavı Sayısal Bölüm Soru Kitapçıkları (Sınavla Öğrenci Alacak Ortaöğretim Kurumlarına İlişkin Merkezi Sınav). https://cdn.eba.gov.tr/yardimcikaynaklar/2025/06/2025_sayisal.pdf sitesinden 16.10.2025 tarihinde indirilmiştir.
  • Milli Eğitim Bakanlığı (MEB). (2024). Liselere Geçiş Sınavı Sayısal Bölüm Soru Kitapçıkları (Sınavla Öğrenci Alacak Ortaöğretim Kurumlarına İlişkin Merkezi Sınav). https://cdn.eba.gov.tr/yardimcikaynaklar/2024/06/2024sayisal.pdf sitesinden 26.06.2025 tarihinde indirilmiştir.
  • Millî Eğitim Bakanlığı (MEB). (2024). Ortaokul matematik dersi öğretim programı Türkiye yüzyılı maarif modeli. Ankara.
  • Milli Eğitim Bakanlığı (MEB). (2025). Liselere Geçiş Sınavı Sayısal Bölüm Soru Kitapçıkları (Sınavla Öğrenci Alacak Ortaöğretim Kurumlarına İlişkin Merkezi Sınav). https://cdn.eba.gov.tr/yardimcikaynaklar/2025/06/lgss/2025sayisal.pdf sitesinden 26.06.2025 tarihinde indirilmiştir.
  • Özarslan, P. (2010). İlköğretim 7. Sınıf öğrencilerinin cebirsel sözel problemleri denklem kurma yoluyla çözme becerilerinin incelenmesi (Yüksek Lisans Tezi). Çukurova Üniversitesi, Adana
  • Pickle, M. C. C. (2012), Statistical content in middle grades mathematics textbooks. (Unpublished doctoral dissertation). University of South Florida, USA.
  • Rock, S. (1992). An examination of selected features of six mathematics textbooks at the seventh-grade level (Unpublished doctoral dissertation). The University of Wisconsin, Madison, USA.
  • Şensoy, S., Tanberkan, H., Suna, H. E., Eroğlu, E. ve Altun, Ü. (2018). 2018 Liselere Geçiş Sistemi (LGS) (Eğitim Analiz Değerlendirme Raporları Serisi/ Yayın No. 3). Ankara: Milli Eğitim Bakanlığı. Erişim adresi https://www.meb.gov.tr/meb_iys_dosyalar/2018_12/17094056_2018_lgs_rapor.pdf sitesinden 22.10.2025 tarihinde indirilmiştir.
  • Tavşan, S. (2020). 6. Sınıf Öğrencilerinin Verilen Cebirsel İfadeleri Uygun Sözel İfadelere Dönüştürebilme Becerilerinin İncelenmesi. Ondokuz Mayis University Journal of Education Faculty, 39(3 100. Yıl Eğitim Sempozyumu Özel Sayı), 275-288.
  • Törnroos, J. (2005). Mathematics textbooks, opportunity to learn and student achievement. Studies in Educational Evaluation. 31(4), 315-327.
  • Ünal, C. ve Eroğlu, D. (2021). LGS Matematik Sorularının Öğretim Programının Özel Amaçlarıyla Uyumluluğunun İncelenmesi. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, 1(60), 510-536.
  • Vance, J. H. (1998). Number operations from an algebraic perpective. Teaching Children Mathematics, 4(5), 282-285.
  • Yağız, G. ve Tapan-Broutin, M. S. (2025). Yedinci sınıf öğrencilerinin cebir konusundaki çoklu temsiller arası geçiş süreçlerinin incelenmesi. Kocaeli Üniversitesi Eğitim Dergisi, 6(1), 141-155.
  • Yalçın, D. ve Duran, E. (2022). LGS Türkçe ve Matematik Sorularındaki Grafiklerin İncelenmesi. Uşak Üniversitesi Eğitim Araştırmaları Dergisi, 8(3), 53-72.
  • Yenilmez, K. ve Teke, M. (2008). Yenilenen matematik programının öğrencilerin cebirsel düşünme düzeylerine etkisi. İnönü Üniversitesi Eğitim Fakültesi Dergisi, 9(15), 229-246.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Alan Eğitimleri (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Gökhan Yağız 0000-0002-3621-5201

Menekşe Seden Tapan Broutın 0000-0002-1860-852X

Gönderilme Tarihi 9 Nisan 2025
Kabul Tarihi 11 Aralık 2025
Erken Görünüm Tarihi 27 Aralık 2025
Yayımlanma Tarihi 27 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 3

Kaynak Göster

APA Yağız, G., & Tapan Broutın, M. S. (2025). Sekizinci Sınıf Matematik Ders Kitapları ile LGS Sınavlarındaki Cebir Konusuyla İlgili Çoklu Temsil Türlerinin İncelenmesi. Batı Anadolu Eğitim Bilimleri Dergisi, 16(3), 4669-4696. https://doi.org/10.51460/baebd.1672893

Amaç ve Kapsam

Dokuz Eylül Üniversitesi, Eğitim Bilimleri Enstitüsü tarafından çıkarılan  "BATI ANADOLU EĞİTİM BİLİMLERİ DERGİSİ (BAEBD)" Nisan, Ağustos ve Aralık aylarında olmak üzere yılda 3 defa Türkçe veya İngilizce dillerinde yayınlanan açık erişimli bilimsel hakemli bir dergidir.

BAEB dergisi, eğitim bilimleri alanı ile ilgili  uygulama veya kuram çalışmalarını güçlü araştırma tasarımları ile  değerlendiren nitelikli çalışmaları yayınlamaktadır. Bu nedenle dergide, özellikle ilgili alanyazının geçmiş ve günümüz ile ilişkisini kurabilen, güncel eğitim ihtiyaçlarımızı takip edip çözümler üretebilen, deneysel, ilişkisel veya kuramsal nitelikli çalışmaların yayınlanması amaçlanmaktadır. Böylece, okul öncesi, ilköğretim, ortaöğretim, lise, yükseköğretim ve hayat boyu öğrenme kademelerinde eğitimin gelişmesine katkı sağlanması beklenmektedir.

BAEBD eğitim teknolojileri, öğretmen yetiştirme, matematik, fen, fizik, kimya, biyoloji, tarih, coğrafya, Türkçe, Türk dili ve edebiyatı, sosyal bilgiler, rehberlik ve psikolojik danışmanlık, okul dışı eğitim, doğa eğitimi, vb. alanlarda çalışmaları kabul etmektedir. Hedef kitlesi eğitim bilimleri alanında çalışma yapan bilim insanları, eğitimciler, öğrenciler, öğretmenler ve eğitim sektörüne yönelik ürün ve hizmet veren kişi ve kuruluşlardır.



BAEBD Yazım Kuralları

BAEBD Telif Hakkı Devir Formu


BAŞVURU EKLERİ:    1-Benzerlik Raporu
                            2-Etik Kurul Belgesi / Etik Kurul Başvurusuna Gerek Yoktur Yazısı
                            3-Telif Hakkı Devir Formu


ŞABLON MAKALE


BAEBD, 10.11.2017 tarihinden itibaren yayın etiği ile ilgili aşağıdaki kuralları benimsemektedir;

1) Dergi yayıncılığında "Yayın Etiği ve Kötüye Kullanım Bildirgesi (COPE -Code of Conduct for Journal Editors)" tarafından belirlenmiş yükümlülükleri esas alır. Detaylı bilgi aşağıda sunulmuştur.

2) Yazar tarafından dergiye gönderilen makalelerin yazarlarından editör intihal raporu talep eder. İntihal raporu incelenerek onaylanan makalelere alan editörü ve hakem ataması yapılır.

3) (10.07.2019 tarihli güncelleme) BAEBD, Cilt 10. Sayı 2’den (Aralık 2019) itibaren anket, mülâkat vb. yollarla veri toplanmasını içeren makale önerilerinde, başvuru öncesinde yazardan etik kurul onay belgesini isteyecektir. Etik kurul belgesi ile ilgili bilgiler yöntem bölümünde sunulacaktır.


YAYIN ETİĞİ VE KÖTÜYE KULLANIM BİLDİRGESİ (COPE)

Editörlerin Sorumlulukları

Tarafsızlık ve Yayıncıya Ait Özgürlük. Editörler gönderilen makale önerilerini derginin kapsamına uygun olması ve çalışmalarının önemi ve orijinalliğini dikkate alarak değerlendirirler. Editörler, makale önerisini sunan yazarların ırk, cinsiyet, cinsel yönelim, etnik köken, uyruk veya politik görüşlerini dikkate almazlar. Düzeltme ya da yayınlama kararına dergi editör kurulu dışında diğer kurumlar etki edemez.
Gizlilik. Editörler gönderilen bir yazıyla ilgili bilgileri, sorumlu yazar, hakemler ve yayın kurulu dışında başka herhangi biriyle paylaşmazlar.
Bilgilendirme ve Görüş Ayrılıkları. Editörler ve yayın kurulu üyeleri, yazarların açık yazılı izni olmaksızın kendi araştırma amaçları için sunulan bir makalede yayınlanmamış bilgileri kullanmazlar.
Basım Kararı. Editörler, yayınlanmak üzere kabul edilen tüm makalelerin, alanında uzman olan en az iki hakem tarafından hakem değerlendirmesine tabi tutulmasını sağlar. Editörler, dergiye gönderilen makalelerden hangi eserin yayınlanacağına, söz konusu çalışmanın geçerliliğine, araştırmacılara ve okurlara olan önemine, hakemlerin yorumlarına ve bu gibi yasal şartlara göre karar vermekten sorumludur.
Etik Kaygılar. Editörler sunulan bir yazıya veya yayınlanmış makaleye ilişkin etik kaygılar ortaya çıktığında tedbirler alacaktır. Yayınlandıktan yıllar sonra ortaya çıksa bile, bildirilen her etik olmayan yayınlama davranışı incelenecektir. Editörler, etik kaygılar oluşması durumunda COPE Flowcharts'ı takip eder. Etik sorunların önemli olması durumunda düzeltme, geri çekme uygulanabilir veya konu ile ilgili endişeler dergide yayınlanabilir.


Hakemlerin görevleri

Editoryal Kararlara Katkı: Editör kararlarında editörlere yardımcı olur ve editoryal iletişim yoluyla yazarlara makalelerini iyileştirmede yardımcı olur.
Sürat: Makale önerisini incelemek için yeterli nitelikte hissetmeyen veya makale incelemesinin zamanında gerçekleşemeyeceğini bilen herhangi bir hakem, derhal editörleri haberdar etmeli ve gözden geçirme davetini reddetmeli, böylece yeni hakem atamasının yapılması sağlanmalıdır.
Gizlilik: Gözden geçirilmek üzere gönderilen tüm makale önerileri gizli belgelerdir ve bu şekilde ele alınmalıdır. Editör tarafından yetkilendirilmedikçe başkalarına gösterilmemeli veya tartışılmamalıdır. Bu durum inceleme davetini reddeden hakemler için de geçerlidir.
Tarafsızlık Standartları: Makale önerisi ile ilgili yorumlar tarafsız olarak yapılmalı ve yazarların makaleyi geliştirmek için kullanabileceği şekilde öneriler yapılmalıdır. Yazarlara yönelik kişisel eleştiriler uygun değildir.
Kaynakların Kabulü: Hakemler, yazarlar tarafından alıntılanmayan ilgili yayınlanmış çalışmaları tanımlamalıdır. Hakem ayrıca, incelenen yazı ile başka herhangi bir makalenin (yayınlanmış veya yayınlanmamış) herhangi bir önemli benzerliğini editörüne bildirmelidir.
Çıkar Çatışmaları: Çıkar çatışmaları editöre bildirilmelidir.


Yazarların Sorumlulukları

Raporlaştırma Standartları: Orijinal araştırmanın yazarları, yapılan çalışmanın ve sonuçların doğru bir şekilde sunulmasını ve ardından çalışmanın öneminin objektif bir şekilde tartışılmasını sağlamalıdır. Makale önerisi yeterli detay ve referans içermelidir.
Veri Erişimi ve Saklama: Yazarların, çalışmalarının ham verilerini saklamaları gerekmektedir. Gerektiğinde, dergi tarafından talep edilmesi durumunda editör incelemesi için sunmalıdırlar.
Özgünlük ve İntihal: Yazarlar, tamamen orijinal eserler göndermelidirler ve başkalarının çalışmalarını veya sözlerini kullanmışlarsa, bu uygun şekilde alıntılanmış olmalıdır. Bunun yanında yazarların kendi tez çalışmaları ve makale çalışmalarından gerçekleştirdikleri alıntılarda da benzerliğin minimum düzeyde olması bir başka deyişle alıntılamanın uygun bir şekilde gerçekleştirilmiş olması önemlidir. Başkasından ya da kendinden intihal, tüm biçimlerinde etik olmayan yayıncılık davranışını oluşturur ve kabul edilemez. Bu nedenle dergiye makale gönderen tüm yazarlardan benzerlik oranı raporu istenmektedir. Rapordaki oran makalenin değerlendirme sürecine geçmesi için belirleyici olacaktır. Oranın yüksek olduğu makaleler geri gönderilerek gerekli düzenlemelerin yapılması istenecektir. Bu kapsamda başkalarının çalışmalarından yapılan intihallerin yanı sıra yazarların kendi tez veya makalelerinden yaptıkları intihallerin de göz önünde bulundurularak bir düzenleme yapması gerekmektedir.
Birden çok, yinelenen, yedekli veya eşzamanlı gönderim / yayın: Yazarlar başka bir dergide daha önce yayınlanmış bir makaleyi değerlendirilmek için göndermemelidir. Bir makalenin birden fazla dergiye eşzamanlı olarak sunulması etik olmayan yayıncılık davranışıdır ve kabul edilemez.
Makalenin Yazarlığı: Sadece yazarlık kriterlerini yerine getiren kişiler, yazının içeriğinde yazar olarak listelenmelidir. Bu yazarlık kriterleri şu şekildedir; (i) tasarım, uygulama, veri toplama veya analiz aşamalarına katkı sağlamıştır (ii) yazıyı hazırlamış veya önemli entelektüel katkı sağlamış veya eleştirel olarak revize etmiştir veya (iii) makalenin son halini görmüş, onaylamış ve yayınlanmak üzere teslim edilmesini kabul etmiştir. Sorumlu yazar, tüm yazarların (yukarıdaki tanıma göre) yazar listesine dâhil edilmesini sağlamalı ve yazarların makalenin son halini gördüklerini ve yayınlanmak üzere sunulmasını kabul ettiklerini beyan etmelidir.
Beyan ve Çıkar Çatışmaları: Yazarlar, mümkün olan en erken aşamada (genellikle makale gönderimi sırasında bir bildirme formu sunarak ve makalede bir beyanı dâhil ederek) çıkar çatışmalarını açığa çıkarmalıdır. Çalışma için tüm mali destek kaynakları beyan edilmelidir (varsa hibe numarası veya diğer referans numarası dâhil).
Hakem Değerlendirme: Yazarlar hakem değerlendirme sürecine katılmakla yükümlüdürler ve editörlerin ham veri taleplerine, açıklamalara ve etik onayının kanıtlarına ve telif hakkı izinlerine derhal yanıt vererek tam olarak işbirliği yapmakla yükümlüdürler. İlk olarak "gerekli revizyon" kararı verilmesi durumunda, yazarlar hakemlerin yorumlarına sistematik bir şekilde verilen son tarihe kadar yazılarını gözden geçirip yeniden ibraz etmelidir.
Yayınlanan Eserlerde Temel Hatalar: Yazarlar kendi yayınladıkları çalışmalarında önemli hatalar veya yanlışlıklar bulduklarında, dergi editörlerini veya yayıncılarını derhal bilgilendirmek ve kâğıt üzerinde bir erratum biçiminde düzeltmek veya kâğıdı çıkarmak için onlarla işbirliği yapmakla yükümlüdür. Editörler veya yayıncı, yayınlanan bir çalışmanın önemli bir hata veya yanlışlık içerdiğini üçüncü bir şahıstan öğrenirse, yazarın makaleyi derhal düzeltme veya geri çekme veya derginin editörlerine kâğıdın doğruluğuna dair kanıt sunma yükümlülüğünü almalıdır.

Batı Anadolu Eğitim Bilimleri Dergisi makale başvurusu, değerlendirmesi ve yayımı için hiçbir ücret almamaktadır.

Sahibi / Owner

Sanat ve Kültür Politikası, Eğitim, Güzel Sanatlar Eğitimi, Sanat Eğitimi (Diğer), Kapsayıcı Eğitim, Sanat ve Edebiyat

Baş Editör / Editor in Chief

Yayın Kurulu / Editorial Board Members

Dergi Kurulu / Advisory Board

Güzel Sanatlar Eğitimi, Resim
Ekoeleştiri, Güzel Sanatlar Eğitimi, Çevresel Sanat, Disiplinlerarası Sanat, Resim
Özel Yetenekli Eğitimi
Medeni Usul ve İcra İflas Hukuku, Sivil Prosedür

Alan Editörleri / Editors

Eğitim, Eğitimde Program Geliştirme, Program Tasarımı, Öğrenme Kuramları, Öğretim Kuramları, Öğretim Tasarımı, Eğitimin Felsefi ve Sosyal Temelleri, Öğretmen Eğitimi ve Eğitimcilerin Mesleki Gelişimi
Temel Eğitim, Sınıf Eğitimi, İlköğretim, Türkçe Eğitimi, Tarih Eğitimi, Coğrafya Eğitimi, Sosyal Bilgiler Eğitimi, Beden Eğitimi ve Oyun
Eğitim, Eğitimde Ölçme ve Değerlendirme, Eğitimde ve Psikolojide Ölçme Teorileri ve Uygulamaları, Sınıfiçi Ölçme Uygulamaları, Eğitimde Ölçme ve Değerlendirme (Diğer)
Eğitim, Zihinsel Engelli Eğitimi
Biyolojik Matematik
Çocuk ve Ergen Ruh Sağlığı ve Hastalıkları, Rehberlik ve Psikolojik Danışmanlık, Aile Danışmanlığı, Madde Bağımlılığı Danışmanlığı, Okul Psikolojik Danışmanlığı, Psikolojik Danışmanlık Eğitimi, Klinik Psikoloji, Psikolojik danışmanlık, Aile Psikolojisi, Eğitim Psikolojisi
Dil Çalışmaları, Eğitim
Çevre Eğitimi ve Yaygınlaştırılması, Coğrafya Eğitimi, Beşeri Coğrafya (Diğer)

Dil Editörleri

Dil Çalışmaları, Eğitim