Araştırma Makalesi
BibTex RIS Kaynak Göster

Oyuncak Tasarımlarının 6. Sınıf Öğrencilerinin Analojik Akıl Yürütme, Problem Çözme ve Mühendislik Tasarım Becerileri Üzerine Etkisinin İncelenmesi: Destek ve Hareket Sistemi

Yıl 2025, Sayı: 18, 237 - 266, 19.08.2025
https://doi.org/10.21733/ibad.1661500

Öz

Oyuncaklar, çocuklar için bir öğrenme aracı olarak kullanılmaktadır. Pedagojik gelişimlerinin yanı sıra, çocuklar oyun ve oyuncaklar aracılığıyla çevrelerini keşfederler. Eğitimde oyuncak kullanımının geçmişten günümüze giderek daha yaygın hale gelmesi, oyuncakların çocukların keşif, sorgulama, işbirliği yapma ve neden-sonuç ilişkilerini anlama gibi becerilerini geliştirmelerine yardımcı olduğunu göstermektedir. Oyuncak yapımı gibi etkinlikler de çocuklarda mühendislik becerilerinin gelişimine katkı sağlamaktadır. Mühendislik becerileri, günümüzde yaygın olarak benimsenmiş STEM (Bilim, Teknoloji, Mühendislik ve Matematik) yaklaşımının bir parçasıdır. Bu çalışmanın amacı, oyuncak tasarımı destekli STEM uygulamalarının 6. sınıf öğrencilerinin destek ve hareket sistemleri konusundaki analojik akıl yürütme, problem çözme ve mühendislik tasarımı becerileri üzerindeki etkisini incelemektir. Çalışma grubunu 6. sınıf 28 ortaokul öğrencisi oluşturmuştur. Çalışmanın konusunun belirlenmesinde Türk eğitim müfredatının 2018 yılı fen bilgisi öğretim programı dikkate alınmıştır. Çalışmada araştırma yöntem ve tekniklerinden karma yöntem kullanılmıştır. Karma desenin nicel boyutu tek grup ön-test son-test deneysel tasarım yöntemiyle gerçekleştirilmiştir. Araştırmanın nitel boyutunda öğrenci tasarım ürünleri içerik analizi ile değerlendirilmiştir. Veri toplamak için Analojik Akıl Yürütme Testi, Problem Çözme Becerileri Anketi ve Mühendislik Tasarımı Rubriği kullanılmıştır. Veriler, nicel ve nitel analiz yöntemleriyle incelenmiştir. Araştırmanın sonuçları, destek ve hareket sistemleri ile ilgili oyuncak tasarımı etkinliklerinin 6. sınıf öğrencilerinin analojik akıl yürütme, problem çözme becerileri ve mühendislik tasarımı becerilerini olumlu bir şekilde geliştirdiğini göstermiştir.

Kaynakça

  • Akarsu, M., Akçay, N. O., & Elmas, R. (2020). STEM eğitimi yaklaşımının özellikleri ve değerlendirilmesi. Bogazici University Journal of Education, 37, 155-175. https://dergipark.org.tr/en/pub/buje/issue/58376/842413
  • Akcay Malcok, B., & Ceylan, R. (2022). The effects of STEM activities on the problem solving skills of 6-year-old preschool children. European Early Childhood Education Research Journal, 30(3), 423-436. https://doi.org/10.1080/1350293X.2021.1965639
  • Anwar, S., Menekse, M., Guzey, S., & Bryan, L. A. (2022). The efectiveness of an integrated STEM curriculum unit on middle school students’ life science learning. Journal of Research in Science Teaching, 59(7), 1204–1234. https://doi.org/10.1002/tea.21756
  • Arastaman, G., Fidan, İ. Ö., & Fidan, T. (2018). Nitel araştırmada geçerlik ve güvenirlik: Kuramsal bir inceleme. Van Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 15(1), 37-75. https://dergipark.org.tr/en/pub/yyuefd/issue/40566/491262
  • Arık, M., & Topçu, M. S. (2020). Implementation of engineering design process in the K-12 science classrooms: Trends and issues. Research in Science Education, 52, 21-43. https://doi.org/10.1007/s11165-019-09912-x
  • Arslanhan, H., & İnaltekin, T. (2020). Tasarım temelli öğrenme uygulamalarının fen bilimleri öğretmen adaylarının STEM anlayışlarını geliştirmeye etkisi. Van Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 17(1), 231-265.
  • Aydın, S. (2014). Olgu bilim araştırması. Metin, M. (Edt.), In Kuramdan uygulamaya eğitimde bilimsel araştırma yöntemleri (s. 300-301). Pegem Akademi.
  • Aykutlu, İ., & Şen, A. İ. (2011). Fizik öğretmen adaylarının analoji kullanımına ilişkin görüşleri ve elektrik akımı konusundaki analojileri. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 41(41). https://dergipark.org.tr/en/download/article-file/87385
  • Bampasidis, G., Piperidis, D., Papakonstantinou, V. C., Stathopoulos, D., Troumpetari, C., & Poutos, P. (2021). Hydrobots, an underwater robotics STEM project: Introduction of engineering design process in secondary education. AEE Journal 9(1), 1.
  • Bartholomew, S. (2017). Integrated STEM through tumblewing gliders. K-12 STEM Education, 3(1),157–166. Bartholomew, S. R., & Strimel, G. J. (2017). Factors influencing student success on open-ended design problems. International Journal of Technology and Design Education, 28(3), 753–770.
  • Ben-Horin, Y., & Rosenberg, D. (2016, March). When something is like something else: Hands-on STEM through analogies. In Conference Proceeding. New Perspectives in Scienze Education (p. 300). libreriauniversitaria. it Edizioni.
  • Bilen, K., Ergün, A., & Şimşek, V. (2021). Okul öncesi döneme yönelik bir STEM etkinliği: Paraşüt tasarlama. Scientific Educational Studies, 5(2), 126-158. https://dergipark.org.tr/tr/pub/ses/article/1007703
  • Brophy, S., Klein, S., Portsmore, M., & Rogers, C. (2008). Advancing engineering education in P-12 classroom. Journal of Engineering Education, 97(3), 369-387.
  • Büyüköztürk, Ş., Kılıç Çakmak, E., Akgün, Ö.E., Karadeniz, Ş. & Demirel, F. (2016). Bilimsel araştırma yöntemleri. Pegem yayıncılık.
  • Cantrell, P., Pekcan, G., Itani, A., & Velasquez-Bryant, N. (2006). The effect of engineering modules on student learning in middle school science classroom. Journal of Engineering Education, 95(4), 301.
  • Cao, C., Ding, Z., Lee, G. G., Jiao, J., Lin, J., & Zhai, X. (2023). Elucidating STEM concepts through generative AI: A multi-modal exploration of analogical reasoning. arXiv preprint arXiv:2308.10454. http://dx.doi.org/10.48550/arXiv.2308.10454
  • Çeken, R. (2010). Fen ve teknoloji dersinde balonlu araba etkinliği. İlköğretim Online, 9(2), 1-5.
  • Christensen, B. T., & Schunn, C. D. (2007). The relationship of analogical distance to analogical function and preinventive structure: The case of engineering design. Memory & cognition, 35, 29-38. https://link.springer.com/article/10.3758/BF03195939
  • Clark, A. C., & Ernst, J. V. (2006). A model for the integration of science, technology, engineering, and mathematics. The Technology Teacher, 66(4), 24–26. https://www.proquest.com/openview/cdab50a3d4198c8001fc5064fc84231a/1?pq-origsite=gscholar&cbl=34845
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. L. Erlbaum Associates.
  • Creswell, J. W. (2021). Karma yöntem araştırmalarına giriş. (M. Sözbilir, Çev). Pegem Akademi.
  • Creswell, J. W., & Plano Clark, V. L. (2011). Designing and conducting mixed methods research. Sage Publications.
  • Cunningham, C. M. (2009). Engineering is elementary. The bridge, 30(3), 11-17. https://www.researchgate.net/publication/285776570_Engineering_Is_Elementary
  • Cunningham, C. M., Lachapelle, C. P., Brennan, R. T., Kelly, G. J., Tunis, C. S. A., & Gentry, C. A. (2020). The impact of engineering curriculum design principles on elementary students’ engineering and science learning. Journal of Research in Science Teaching, 57(3), 423–453. https://doi.org/10.1002/tea.21601
  • Cuperman, D., & Verner, I. M. (2019). Fostering analogical reasoning through creating robotic models of biological systems. Journal of Science Education and Technology, 28, 90-103. https://doi.org/10.1007/s10956-018-9750-4
  • Daugherty, J., & Mentzer, N. (2008). Analogical reasoning in the engineering design process and technology education applications. Journal of Technology Education, 19(2), 7. https://vtechworks.lib.vt.edu/server/api/core/bitstreams/af1e127f-7ae1-4cd1-a6c5-51ebbc666432/content
  • Egwutvongsa, S. (2020). Toys for children with the concept of STEM: Study of the result from children’s playing activities. Journal for the Education of Gifted Young Scientists, 9(2), 77-90. http://dx.doi.org/10.17478/jegys.849063
  • Eisenkraft, A. & Chen Freake, S.Y. (2018). Beyond the egg drop. NSTA press.
  • Ercan, S., & Şahin, F. (2015). The Usage of engineering practices in science education: Effects of design based science learning on students' academic achievement. Necatibey Faculty of Education Electronic Journal of Science & Mathematics Education, 9(1), 128-164.
  • Ergül, A. (2023). Analojik akıl yürütmenin biyomimikri ile desteklenmesi: Doğa ile öğrenen çocuklar. Türk Eğitim Bilimleri Dergisi, 21(2), 879-904. https://doi.org/10.37217/tebd.1161851
  • Esin, A., Erdem, E., Yılmaz, A., & Gücüm, B. (2004). Enzimler konusunun anlamlı öğrenilmesinde analojiler oluşturmanın etkisi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 27,21-29. https://dergipark.org.tr/en/download/article-file/87792
  • Felix, A., & Harris, J. (2010). A project-based, STEM-integrated alternative energy team challenge for teachers. The Technology Teacher, 69(5), 29–34.
  • Gerring, J. (2007). Case study research: Principles and practices. Cambridge University Press. Goel, A. K., & Shu, L. H. (2015). Analogical thinking: An introduction in the context of design. Ai Edam, 29(2), 133-134.
  • Gök, B., & Sürmeli, H. (2022). The Effect of scientific toy design activities based on the engineering design process on secondary school students‟ scientific creativity. Asian Journal of University Education, 18(3), 692-709.
  • Gray, M. (2021). An analogical approach to STEM education. University of California.
  • Gray, M. E., & Holyoak, K. J. (2021). Teaching by analogy: From theory to practice. Mind, Brain, and Education, 15(3), 250-263. https://doi.org/10.1111/mbe.12288
  • Hey, J., Linsey, J., Agogino, A. M., & Wood, K. L. (2008). Analogies and metaphors in creative design. International Journal of Engineering Education, 24(2), 283.
  • Hynes, M., Portsmore, M., Dare, E., Milto, E., Rogers, C., Hammer, D., & Carberry, A. (2011). Infusing engineering design into high school STEM courses. NCETE, 1-7.
  • İnce, K., Mısır, M. E., Küpeli, M. A., & Fırat, A. (2018). 5. Sınıf fen bilimleri dersi yer kabuğunun gizemi ünitesinin öğretiminde STEM temelli yaklaşımın öğrencilerin problem çözme becerisi ve akademik başarısına etkisinin incelenmesi. Journal of STEAM Education, 1(1), 64-78.
  • Jarrett, O. S., Bulunuz, M., Jarrett, R., & Bulunuz, N. (Spring, 2020). Teaching with toys: Scientific inquiry through play. E-journal The American Association for the Child's Right to Play (IPAUSA). http://www.ipausa.org/
  • Kaçan, S. D. (2015). Designing science games and science toys from the perspective of scientific creativity. Journal of Education and Practice, 26(6), 116-18.
  • Kartini, F. S., Widodo, A., Winarno, N., & Astuti, L. (2021). Promoting student's problem solving skills through STEM project-based learning in earth layer and disasters topic. Journal of Science Learning, 4(3), 257-266.
  • Kesercioğlu, T., Yılmaz, H., Çavaş, P. H., Çavaş, B. (2004). İlköğretim fen bilgisi öğretiminde analojilerin kullanımı: “örnek uygulamalar”. Ege Eğitim Dergisi, 5(1). https://dergipark.org.tr/en/pub/egeefd/issue/4920/67311.
  • King, D., & English, L. D. (2016). Engineering design in the primary school: Applying STEM concepts to build an optical instrument. International Journal of Science Education, 38(18), 2762-2794. https://doi.org/10.1080/09500693.2016.1262567
  • Lewis, T. (2006). Design and inquiry: Bases for accommodation between science and technology education in the curriculum. Journal of Research in Science Teaching, 43(3), 255-281.
  • Lin, K. Y., Hsiao, H. S., Williams, P. J., & Chen, Y. H. (2020). Efects of 6E-oriented STEM practical activities in cultivating middle school students’ attitudes toward technology and technological inquiry ability. Research in Science & Technological Education, 38(1), 1–18.
  • Machuve, J., & Mkenda, E. (2019). Promoting STEM education through sustainable manufacturing: Case study of photovoltaic toys. Procedia Manufacturing, 33, 740-745.
  • Moore, T. J., Tank, K. M., Glancy, A. W., & Kersten, J. A. (2013, January). A framework for implementing engineering standards in K-12. Paper to be presented at the international conference of Association for Science Teacher Education (ASTE), Charleston, SC.
  • National Research Council (NRC) (2009). Engineering in K–12 education: Understanding the status and improving the prospects. National Academies Press.
  • Önen Öztürk, F., Demir, S., & Şahin, F. (2011). Fen bilgisi öğretmen adaylarının bakış açısıyla analojiler. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 5(2), 86-114.
  • Patton, M. Q. (2005). Qualitative research. John Wiley & Sons, Ltd.
  • Pehlivan, H. (2016). The Role of play on development and learning. Journal of Human Sciences, 13(2), 3280-3292.
  • Richland, L.E.(2014). Educating students for innovation in STEM: Analogy is a key. American Association for the Advancement of Science 2015 Annual Meeting.
  • Rivet, A. E., & Kastens, K. A. (2012). Developing a construct‐based assessment to examine students' analogical reasoning around physical models in earth science. Journal of Research in Science Teaching, 49(6), 713-743. https://doi.org/10.1002/tea.21029
  • Roth, W.-M. (2001). Learning science through technological design. Journal of Research in Science Teaching, 38, 768–790. https://doi.org/10.1002/tea.1031.
  • Samsudin, M. A., Osman, K., & Halim, L. (2007, March). Content scaffolding or cognitive scaffolding?Which scaffolding technique encourages students to think actively while doing problem based learning? International Problem-based learning symposium (pp. 150-173).
  • Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher, December/January, 20-26.
  • Shahali, E. H. M., Halim, L., Rasul, M. S., Osman, K., & Zulkifeli, M. A. (2016). STEM learning through engineering design: impact on middle secondary students’ interest towards STEM. Eurasia Journal of Mathematics, Science and Technology Education, 13, 1189-1211. https://doi.org/10.12973/eurasia.2017.00667a
  • Sheppard, S. D, Macantangay, K., Colby, A. & Sullivan, W. M. (2009). Educating engineers: Designing for the future of the field. Jossey-Bass.
  • Siew, N. M., Goh, H., & Sulaiman, F. (2016). Integrating STEM in an engineering design process: the learning experience of rural secondary school students in an outreach challenge program. Journal of Baltic Science Education, 15(4), 477.
  • Slavit, D., Grace, E., & Lesseig, K. (2021). Student ways of thinking in STEM contexts: A focus on claim making and reasoning. School Science and Mathematics, 121(8), 466-480.
  • Smyrnaiou, Z., Sotiriou, M., Sotiriou, S., & Georgakopoulou, E. (2017). Multi-semiotic systems in STEMS: Embodied learning and analogical reasoning through a grounded theory approach in theatrical performances. Journal of Research in STEM Education, 14, 99-112.
  • Stein, M., & Miller, D. (1997). Teaching with toys. The Science Teacher, 64(4), 22.
  • Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics. Pearson Education Inc.
  • Taşçı, M. (2019).Tersine mühendislik uygulamalarının 8. sınıf öğrencilerinde akademik başarılarına, problem çözme becerilerine, STEM tutum ve algılarına etkisinin incelenmesi. Yüksek Lisans Tezi, Marmara Üniversitesi, İstanbul.
  • Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach's alpha. International journal of medical education, 2, 53.
  • Thornburg, D. (2009). Hands and minds: Why engineering is the glue holding STEM together. Thornburg Center for Space Exploration. http://www.tcse-k12.org/pages/hands.pdf.
  • Topalsan, A. K. (2018). Sınıf öğretmenliği öğretmen adaylarının geliştirdikleri mühendislik tasarım temelli fen öğretim etkinliklerinin değerlendirilmesi. Van Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 15(1), 186-219.
  • Türk, E. F., & Korkmaz, Ö. (2023). Eğitsel robot setleri ile gerçekleştirilen stem etkinliklerinin etkililiği: deneysel bir çalışma. Ahmet Keleşoğlu Eğitim Fakültesi Dergisi, 5(1), 92-118.
  • Verhaegen, P. A., D‟hondt, J., Vandevenne, D., Dewulf, S., & Duflou, J. R. (2011). Identifying candidates for design-by-analogy. Computers in Industry, 62(4), 446-459.
  • Vurucu, C. (2019). Erken çocukluk döneminde bilim ve mühendislik uygulamalarının öğrencilerin bilimsel süreç becerilerine, karar verme ve problem çözme becerilerine etkisi. Yüksek Lisans Tezi, Marmara Universitesi, İstanbul.
  • Wang, H., Moore, T., Roehrig, G., & Park, M.S. (2011). STEM Integration: Teacher perceptions and practice. Journal of Pre-College Engineering Education Research, 1(2), 1-13.
  • Yalçin, V., & Erden, S. (2023). Design oriented STEM education with preschool children. Southeast Asia Early Childhood, 12(1), 40-53.
  • Yasar, O., Little, L., Tuzun, R., Rajasethupathy, K., Maliekal, J., & Tahar, M. (2006). Computation math, science, and technology (CMST): A strategy to improve STEM workforce and pedagogy to improve math and science education. Springer-Verlag. 169-176.
  • Yasin, R. M., Lilia, H. & Azaman, I. (2012). Effects of problem-solving strategies in the teaching and learning of engineering drawing subject. Asian Social Science, 8(16), 65.
  • Yıldırım, A. & Şimşek, H. (2006). Sosyal bilimlerde nitel araştırma yöntemleri. Seçkin Yayıncılık.
  • Yıldırım, A. & Şimşek, H. (2013). Sosyal bilimlerde nitel araştırma yöntemleri. Seçkin Yayıncılık.
  • Zhou, N., Pereira, N. L., George, T. T., Alperovich, J., Booth, J., Chandrasegaran, S., ... & Ramani, K. (2017). The influence of toy design activities on middle school students’ understanding of the engineering design processes. Journal of Science Education and Technology, 26, 481-493. https://doi.org/10.1007/s10956-017-9693-1

Investigating the Impact of Toy Design on 6th Grade Students’ Analogical Reasoning, Problem-Solving, and Engineering Design Skills: The Case of Support and Movement Systems

Yıl 2025, Sayı: 18, 237 - 266, 19.08.2025
https://doi.org/10.21733/ibad.1661500

Öz

Toys are commonly used as educational tools for children. Beyond supporting their pedagogical development, children also explore and make sense of their environment through play and toys. The use of toys in education has become increasingly widespread over time, as they help foster skills such as exploration, inquiry, collaboration, and understanding cause-and-effect relationships. Activities like toy-making further contribute to the development of engineering-related skills in children, which are integral to the widely adopted STEM (Science, Technology, Engineering, and Mathematics) approach. The purpose of this study is to examine the impact of a STEM-based instructional approach supported by toy design on 6th-grade students’ analogical reasoning, problem-solving, and engineering design skills within the context of support and movement systems. The study group consisted of 28 6th-grade middle school students. The topic was selected based on the 2018 Turkish Science Curriculum. A mixed-methods research design was employed. The quantitative phase utilized a one-group pre-test/post-test experimental design, while the qualitative phase involved content analysis of students’ design products. Data were collected using the Analogical Reasoning Test, the Problem-Solving Skills Questionnaire, and the Engineering Design Rubric. Both quantitative and qualitative data analysis methods were applied. The findings showed that toy design activities related to support and movement systems significantly improved students’ analogical reasoning, problem-solving abilities, and engineering design skills.

Kaynakça

  • Akarsu, M., Akçay, N. O., & Elmas, R. (2020). STEM eğitimi yaklaşımının özellikleri ve değerlendirilmesi. Bogazici University Journal of Education, 37, 155-175. https://dergipark.org.tr/en/pub/buje/issue/58376/842413
  • Akcay Malcok, B., & Ceylan, R. (2022). The effects of STEM activities on the problem solving skills of 6-year-old preschool children. European Early Childhood Education Research Journal, 30(3), 423-436. https://doi.org/10.1080/1350293X.2021.1965639
  • Anwar, S., Menekse, M., Guzey, S., & Bryan, L. A. (2022). The efectiveness of an integrated STEM curriculum unit on middle school students’ life science learning. Journal of Research in Science Teaching, 59(7), 1204–1234. https://doi.org/10.1002/tea.21756
  • Arastaman, G., Fidan, İ. Ö., & Fidan, T. (2018). Nitel araştırmada geçerlik ve güvenirlik: Kuramsal bir inceleme. Van Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 15(1), 37-75. https://dergipark.org.tr/en/pub/yyuefd/issue/40566/491262
  • Arık, M., & Topçu, M. S. (2020). Implementation of engineering design process in the K-12 science classrooms: Trends and issues. Research in Science Education, 52, 21-43. https://doi.org/10.1007/s11165-019-09912-x
  • Arslanhan, H., & İnaltekin, T. (2020). Tasarım temelli öğrenme uygulamalarının fen bilimleri öğretmen adaylarının STEM anlayışlarını geliştirmeye etkisi. Van Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 17(1), 231-265.
  • Aydın, S. (2014). Olgu bilim araştırması. Metin, M. (Edt.), In Kuramdan uygulamaya eğitimde bilimsel araştırma yöntemleri (s. 300-301). Pegem Akademi.
  • Aykutlu, İ., & Şen, A. İ. (2011). Fizik öğretmen adaylarının analoji kullanımına ilişkin görüşleri ve elektrik akımı konusundaki analojileri. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 41(41). https://dergipark.org.tr/en/download/article-file/87385
  • Bampasidis, G., Piperidis, D., Papakonstantinou, V. C., Stathopoulos, D., Troumpetari, C., & Poutos, P. (2021). Hydrobots, an underwater robotics STEM project: Introduction of engineering design process in secondary education. AEE Journal 9(1), 1.
  • Bartholomew, S. (2017). Integrated STEM through tumblewing gliders. K-12 STEM Education, 3(1),157–166. Bartholomew, S. R., & Strimel, G. J. (2017). Factors influencing student success on open-ended design problems. International Journal of Technology and Design Education, 28(3), 753–770.
  • Ben-Horin, Y., & Rosenberg, D. (2016, March). When something is like something else: Hands-on STEM through analogies. In Conference Proceeding. New Perspectives in Scienze Education (p. 300). libreriauniversitaria. it Edizioni.
  • Bilen, K., Ergün, A., & Şimşek, V. (2021). Okul öncesi döneme yönelik bir STEM etkinliği: Paraşüt tasarlama. Scientific Educational Studies, 5(2), 126-158. https://dergipark.org.tr/tr/pub/ses/article/1007703
  • Brophy, S., Klein, S., Portsmore, M., & Rogers, C. (2008). Advancing engineering education in P-12 classroom. Journal of Engineering Education, 97(3), 369-387.
  • Büyüköztürk, Ş., Kılıç Çakmak, E., Akgün, Ö.E., Karadeniz, Ş. & Demirel, F. (2016). Bilimsel araştırma yöntemleri. Pegem yayıncılık.
  • Cantrell, P., Pekcan, G., Itani, A., & Velasquez-Bryant, N. (2006). The effect of engineering modules on student learning in middle school science classroom. Journal of Engineering Education, 95(4), 301.
  • Cao, C., Ding, Z., Lee, G. G., Jiao, J., Lin, J., & Zhai, X. (2023). Elucidating STEM concepts through generative AI: A multi-modal exploration of analogical reasoning. arXiv preprint arXiv:2308.10454. http://dx.doi.org/10.48550/arXiv.2308.10454
  • Çeken, R. (2010). Fen ve teknoloji dersinde balonlu araba etkinliği. İlköğretim Online, 9(2), 1-5.
  • Christensen, B. T., & Schunn, C. D. (2007). The relationship of analogical distance to analogical function and preinventive structure: The case of engineering design. Memory & cognition, 35, 29-38. https://link.springer.com/article/10.3758/BF03195939
  • Clark, A. C., & Ernst, J. V. (2006). A model for the integration of science, technology, engineering, and mathematics. The Technology Teacher, 66(4), 24–26. https://www.proquest.com/openview/cdab50a3d4198c8001fc5064fc84231a/1?pq-origsite=gscholar&cbl=34845
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. L. Erlbaum Associates.
  • Creswell, J. W. (2021). Karma yöntem araştırmalarına giriş. (M. Sözbilir, Çev). Pegem Akademi.
  • Creswell, J. W., & Plano Clark, V. L. (2011). Designing and conducting mixed methods research. Sage Publications.
  • Cunningham, C. M. (2009). Engineering is elementary. The bridge, 30(3), 11-17. https://www.researchgate.net/publication/285776570_Engineering_Is_Elementary
  • Cunningham, C. M., Lachapelle, C. P., Brennan, R. T., Kelly, G. J., Tunis, C. S. A., & Gentry, C. A. (2020). The impact of engineering curriculum design principles on elementary students’ engineering and science learning. Journal of Research in Science Teaching, 57(3), 423–453. https://doi.org/10.1002/tea.21601
  • Cuperman, D., & Verner, I. M. (2019). Fostering analogical reasoning through creating robotic models of biological systems. Journal of Science Education and Technology, 28, 90-103. https://doi.org/10.1007/s10956-018-9750-4
  • Daugherty, J., & Mentzer, N. (2008). Analogical reasoning in the engineering design process and technology education applications. Journal of Technology Education, 19(2), 7. https://vtechworks.lib.vt.edu/server/api/core/bitstreams/af1e127f-7ae1-4cd1-a6c5-51ebbc666432/content
  • Egwutvongsa, S. (2020). Toys for children with the concept of STEM: Study of the result from children’s playing activities. Journal for the Education of Gifted Young Scientists, 9(2), 77-90. http://dx.doi.org/10.17478/jegys.849063
  • Eisenkraft, A. & Chen Freake, S.Y. (2018). Beyond the egg drop. NSTA press.
  • Ercan, S., & Şahin, F. (2015). The Usage of engineering practices in science education: Effects of design based science learning on students' academic achievement. Necatibey Faculty of Education Electronic Journal of Science & Mathematics Education, 9(1), 128-164.
  • Ergül, A. (2023). Analojik akıl yürütmenin biyomimikri ile desteklenmesi: Doğa ile öğrenen çocuklar. Türk Eğitim Bilimleri Dergisi, 21(2), 879-904. https://doi.org/10.37217/tebd.1161851
  • Esin, A., Erdem, E., Yılmaz, A., & Gücüm, B. (2004). Enzimler konusunun anlamlı öğrenilmesinde analojiler oluşturmanın etkisi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 27,21-29. https://dergipark.org.tr/en/download/article-file/87792
  • Felix, A., & Harris, J. (2010). A project-based, STEM-integrated alternative energy team challenge for teachers. The Technology Teacher, 69(5), 29–34.
  • Gerring, J. (2007). Case study research: Principles and practices. Cambridge University Press. Goel, A. K., & Shu, L. H. (2015). Analogical thinking: An introduction in the context of design. Ai Edam, 29(2), 133-134.
  • Gök, B., & Sürmeli, H. (2022). The Effect of scientific toy design activities based on the engineering design process on secondary school students‟ scientific creativity. Asian Journal of University Education, 18(3), 692-709.
  • Gray, M. (2021). An analogical approach to STEM education. University of California.
  • Gray, M. E., & Holyoak, K. J. (2021). Teaching by analogy: From theory to practice. Mind, Brain, and Education, 15(3), 250-263. https://doi.org/10.1111/mbe.12288
  • Hey, J., Linsey, J., Agogino, A. M., & Wood, K. L. (2008). Analogies and metaphors in creative design. International Journal of Engineering Education, 24(2), 283.
  • Hynes, M., Portsmore, M., Dare, E., Milto, E., Rogers, C., Hammer, D., & Carberry, A. (2011). Infusing engineering design into high school STEM courses. NCETE, 1-7.
  • İnce, K., Mısır, M. E., Küpeli, M. A., & Fırat, A. (2018). 5. Sınıf fen bilimleri dersi yer kabuğunun gizemi ünitesinin öğretiminde STEM temelli yaklaşımın öğrencilerin problem çözme becerisi ve akademik başarısına etkisinin incelenmesi. Journal of STEAM Education, 1(1), 64-78.
  • Jarrett, O. S., Bulunuz, M., Jarrett, R., & Bulunuz, N. (Spring, 2020). Teaching with toys: Scientific inquiry through play. E-journal The American Association for the Child's Right to Play (IPAUSA). http://www.ipausa.org/
  • Kaçan, S. D. (2015). Designing science games and science toys from the perspective of scientific creativity. Journal of Education and Practice, 26(6), 116-18.
  • Kartini, F. S., Widodo, A., Winarno, N., & Astuti, L. (2021). Promoting student's problem solving skills through STEM project-based learning in earth layer and disasters topic. Journal of Science Learning, 4(3), 257-266.
  • Kesercioğlu, T., Yılmaz, H., Çavaş, P. H., Çavaş, B. (2004). İlköğretim fen bilgisi öğretiminde analojilerin kullanımı: “örnek uygulamalar”. Ege Eğitim Dergisi, 5(1). https://dergipark.org.tr/en/pub/egeefd/issue/4920/67311.
  • King, D., & English, L. D. (2016). Engineering design in the primary school: Applying STEM concepts to build an optical instrument. International Journal of Science Education, 38(18), 2762-2794. https://doi.org/10.1080/09500693.2016.1262567
  • Lewis, T. (2006). Design and inquiry: Bases for accommodation between science and technology education in the curriculum. Journal of Research in Science Teaching, 43(3), 255-281.
  • Lin, K. Y., Hsiao, H. S., Williams, P. J., & Chen, Y. H. (2020). Efects of 6E-oriented STEM practical activities in cultivating middle school students’ attitudes toward technology and technological inquiry ability. Research in Science & Technological Education, 38(1), 1–18.
  • Machuve, J., & Mkenda, E. (2019). Promoting STEM education through sustainable manufacturing: Case study of photovoltaic toys. Procedia Manufacturing, 33, 740-745.
  • Moore, T. J., Tank, K. M., Glancy, A. W., & Kersten, J. A. (2013, January). A framework for implementing engineering standards in K-12. Paper to be presented at the international conference of Association for Science Teacher Education (ASTE), Charleston, SC.
  • National Research Council (NRC) (2009). Engineering in K–12 education: Understanding the status and improving the prospects. National Academies Press.
  • Önen Öztürk, F., Demir, S., & Şahin, F. (2011). Fen bilgisi öğretmen adaylarının bakış açısıyla analojiler. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 5(2), 86-114.
  • Patton, M. Q. (2005). Qualitative research. John Wiley & Sons, Ltd.
  • Pehlivan, H. (2016). The Role of play on development and learning. Journal of Human Sciences, 13(2), 3280-3292.
  • Richland, L.E.(2014). Educating students for innovation in STEM: Analogy is a key. American Association for the Advancement of Science 2015 Annual Meeting.
  • Rivet, A. E., & Kastens, K. A. (2012). Developing a construct‐based assessment to examine students' analogical reasoning around physical models in earth science. Journal of Research in Science Teaching, 49(6), 713-743. https://doi.org/10.1002/tea.21029
  • Roth, W.-M. (2001). Learning science through technological design. Journal of Research in Science Teaching, 38, 768–790. https://doi.org/10.1002/tea.1031.
  • Samsudin, M. A., Osman, K., & Halim, L. (2007, March). Content scaffolding or cognitive scaffolding?Which scaffolding technique encourages students to think actively while doing problem based learning? International Problem-based learning symposium (pp. 150-173).
  • Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher, December/January, 20-26.
  • Shahali, E. H. M., Halim, L., Rasul, M. S., Osman, K., & Zulkifeli, M. A. (2016). STEM learning through engineering design: impact on middle secondary students’ interest towards STEM. Eurasia Journal of Mathematics, Science and Technology Education, 13, 1189-1211. https://doi.org/10.12973/eurasia.2017.00667a
  • Sheppard, S. D, Macantangay, K., Colby, A. & Sullivan, W. M. (2009). Educating engineers: Designing for the future of the field. Jossey-Bass.
  • Siew, N. M., Goh, H., & Sulaiman, F. (2016). Integrating STEM in an engineering design process: the learning experience of rural secondary school students in an outreach challenge program. Journal of Baltic Science Education, 15(4), 477.
  • Slavit, D., Grace, E., & Lesseig, K. (2021). Student ways of thinking in STEM contexts: A focus on claim making and reasoning. School Science and Mathematics, 121(8), 466-480.
  • Smyrnaiou, Z., Sotiriou, M., Sotiriou, S., & Georgakopoulou, E. (2017). Multi-semiotic systems in STEMS: Embodied learning and analogical reasoning through a grounded theory approach in theatrical performances. Journal of Research in STEM Education, 14, 99-112.
  • Stein, M., & Miller, D. (1997). Teaching with toys. The Science Teacher, 64(4), 22.
  • Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics. Pearson Education Inc.
  • Taşçı, M. (2019).Tersine mühendislik uygulamalarının 8. sınıf öğrencilerinde akademik başarılarına, problem çözme becerilerine, STEM tutum ve algılarına etkisinin incelenmesi. Yüksek Lisans Tezi, Marmara Üniversitesi, İstanbul.
  • Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach's alpha. International journal of medical education, 2, 53.
  • Thornburg, D. (2009). Hands and minds: Why engineering is the glue holding STEM together. Thornburg Center for Space Exploration. http://www.tcse-k12.org/pages/hands.pdf.
  • Topalsan, A. K. (2018). Sınıf öğretmenliği öğretmen adaylarının geliştirdikleri mühendislik tasarım temelli fen öğretim etkinliklerinin değerlendirilmesi. Van Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 15(1), 186-219.
  • Türk, E. F., & Korkmaz, Ö. (2023). Eğitsel robot setleri ile gerçekleştirilen stem etkinliklerinin etkililiği: deneysel bir çalışma. Ahmet Keleşoğlu Eğitim Fakültesi Dergisi, 5(1), 92-118.
  • Verhaegen, P. A., D‟hondt, J., Vandevenne, D., Dewulf, S., & Duflou, J. R. (2011). Identifying candidates for design-by-analogy. Computers in Industry, 62(4), 446-459.
  • Vurucu, C. (2019). Erken çocukluk döneminde bilim ve mühendislik uygulamalarının öğrencilerin bilimsel süreç becerilerine, karar verme ve problem çözme becerilerine etkisi. Yüksek Lisans Tezi, Marmara Universitesi, İstanbul.
  • Wang, H., Moore, T., Roehrig, G., & Park, M.S. (2011). STEM Integration: Teacher perceptions and practice. Journal of Pre-College Engineering Education Research, 1(2), 1-13.
  • Yalçin, V., & Erden, S. (2023). Design oriented STEM education with preschool children. Southeast Asia Early Childhood, 12(1), 40-53.
  • Yasar, O., Little, L., Tuzun, R., Rajasethupathy, K., Maliekal, J., & Tahar, M. (2006). Computation math, science, and technology (CMST): A strategy to improve STEM workforce and pedagogy to improve math and science education. Springer-Verlag. 169-176.
  • Yasin, R. M., Lilia, H. & Azaman, I. (2012). Effects of problem-solving strategies in the teaching and learning of engineering drawing subject. Asian Social Science, 8(16), 65.
  • Yıldırım, A. & Şimşek, H. (2006). Sosyal bilimlerde nitel araştırma yöntemleri. Seçkin Yayıncılık.
  • Yıldırım, A. & Şimşek, H. (2013). Sosyal bilimlerde nitel araştırma yöntemleri. Seçkin Yayıncılık.
  • Zhou, N., Pereira, N. L., George, T. T., Alperovich, J., Booth, J., Chandrasegaran, S., ... & Ramani, K. (2017). The influence of toy design activities on middle school students’ understanding of the engineering design processes. Journal of Science Education and Technology, 26, 481-493. https://doi.org/10.1007/s10956-017-9693-1
Toplam 78 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Alan Eğitimleri (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Ecem Göktuna 0009-0002-4599-2333

Fatma Şahin 0000-0002-6291-0013

Erken Görünüm Tarihi 3 Temmuz 2025
Yayımlanma Tarihi 19 Ağustos 2025
Gönderilme Tarihi 21 Mart 2025
Kabul Tarihi 29 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 18

Kaynak Göster

APA Göktuna, E., & Şahin, F. (2025). Investigating the Impact of Toy Design on 6th Grade Students’ Analogical Reasoning, Problem-Solving, and Engineering Design Skills: The Case of Support and Movement Systems. IBAD Sosyal Bilimler Dergisi(18), 237-266. https://doi.org/10.21733/ibad.1661500